The following engineering reports were used in preliminary evaluations of the Upper Main Ditch Piping Project and were used to develop and support the analysis in this Draft EIR.

E.1 FAR WESTERN ANTHROPOLOGICAL RESEARCH GROUP, INC. CULTURAL RESOURCES STUDY FOR EL DORADO IRRIGATION DISTRICT’S LOWER MAIN CANAL PIPING PROJECT (MAY 2018)
Cultural Resources Study for El Dorado Irrigation District’s Lower Main Canal Piping Project

By:
Sharon A. Waechter
Far Western Anthropological Research Group, Inc.

and:
Heather Norby
Stephen Wee
JRP Historical Consulting, LLC

May 2018 FINAL
Cultural Resources Study
for El Dorado Irrigation District’s
Lower Main Canal Piping Project

By:
Sharon A. Waechter
Far Western Anthropological Research Group, Inc.

and:
Heather Norby
Stephen Wee
JRP Historical Consulting, LLC

Contributions by:
John E. Berg
Far Western Anthropological Research Group, Inc.

May 2018 FINAL

Submitted to:
Dan Corcoran
Environmental and Water Resources Manager
El Dorado Irrigation District
2890 Mosquito Road
Placerville, CA 95667
TABLE OF CONTENTS

INTRODUCTION .. 1

PROJECT DESCRIPTION AND AREA OF POTENTIAL EFFECTS ... 1

STUDY METHODS AND RESULTS .. 7
 Records Search and Archival Research .. 7
 Native American Outreach .. 7
 Cultural Context ... 7
 Native American History .. 7
 Non-Native History .. 9
 Archaeological Fieldwork .. 18
 Historic Architectural Fieldwork .. 19
 Evaluations ... 19
 Blair Road .. 19
 Site P-09-3717H: Schuhmann Homestead/Loomer Property/Boy Scout Camp ... 20
 The El Dorado Canal ... 22

SUMMARY AND RECOMMENDATIONS .. 26

REFERENCES ... 27

APPENDICES

Appendix A. Records Search Results *(Confidential)*.
Appendix B. Native American Consultation.
Appendix C. Site Records.

LIST OF FIGURES

Figure 1. Project Vicinity ... 2
Figure 2. Project Location ... 3
Figure 3. Updated Alignments ... 4
Figure 4. Excerpt of 1874 Survey Plat of T11N, R12E, MDBM (red arrow indicates first leg of Blair Road branching off from Carson Valley Road to Elkhorn Sawmill). ... 10
Figure 5. Excerpt of 1891 USGS Placerville Topographic Map (Blair Road connected Sportsman’s Hall, located at Fyffe, to the Blair Sawmill–location depicted on the map–that operated from about 1880 into the early twentieth century). ... 10
INTRODUCTION

The El Dorado Irrigation District (EID) proposes to pipe a three-mile section of their Main Canal (aka Main Ditch) between the Forebay and Gilmore Road in Pollock Pines (Figures 1 and 2). In 2012, archaeologists from Cardno Entrix conducted a records search and archival research, Native American outreach, a pedestrian survey of the canal corridor, and an evaluation of the ditch section for eligibility to the National Register of Historic Places (National Register) and the California Register of Historical Resources (California Register; Cardno Entrix 2012). They concluded that the segment of the Main Ditch in the project area did not appear to be eligible for either register, and that no other archaeological or historical resources were present in the project Area of Potential Effects (APE).

Since that time, EID has increased the APE to include alternative pipeline routes. Far Western Anthropological Research Group, Inc., (Far Western) was chosen, under a three-year on-call contract with EID, to carry out an updated archaeological and historic architectural study that included the new alternatives. In addition, a peer review by Far Western’s subconsultants JRP Historical Consulting, LLC (JRP) of the Cardno Entrix ditch evaluation determined that more thorough recordation, research, and documentation were necessary to support the conclusion that the ditch segment was not eligible. The current study has included an updated records search, pedestrian survey of the new alternative routes, re-recording and evaluation of an historic-era homestead/Boy Scout camp (P-09-3717H) and of a portion of Blair Road, and additional research for the Upper Main Ditch segment within the project APE.1

PROJECT DESCRIPTION AND AREA OF POTENTIAL EFFECTS

The primary objectives of the proposed project are to (1) reduce water loss resulting from seepage and evapotranspiration, contribute to EID’s overall water conservation goals and objectives, and improve the District’s water supply reliability and sustainability; (2) protect drinking water quality by eliminating the potential for intentional or unintentional contamination of the open ditch, and improve District water security; and (3) reduce operations and maintenance costs that result from increased treatment costs associated with the additional flows carrying debris and sediment into the ditch through uncontrolled stormwater runoff from the adjacent watershed. Because the project will be partially funded through a Water Smart grant from the US Bureau of Reclamation, the proposed project would be considered a federal undertaking subject to Section 106 of the National Historic Preservation Act.

There are two APEs for the cultural studies. The APE for archaeology consists of the ditch footprint and 35-foot-wide corridor along the ditch (Alignment 1, shown in Figure 3a) surveyed by Cardno Entrix in 2012, and a 50-foot-wide corridor along Blair Road and in cross-country areas (Alignment 2) and seven possible staging/laydown areas, surveyed by Far Western archaeologists John Berg and Angela Armstrong-Ingram in 2018 (Figure 3b). The APE for historic architectural (built environment) resources consists of the lower El Dorado Main Canal footprint from its outlet at Forebay Dam to its terminus south of Placerville near Airport Road, the paved roadbed of Blair Road between Forebay Road and Pony Express Trail, and Assessor’s Parcel Number 101-240-45-100, which contains proposed laydown areas and buildings that are more than 50 years old (i.e., recorded resource P-09-3717H). The APE for the lower El Dorado Main Canal is wholly within EID’s federal patent (easement); the APE for Blair Road is wholly within existing public utilities easements. Locations and extent of proposed project disturbances are listed in Table 1.

1 EID refers to the project segment of the El Dorado Main Canal as “Upper Main Ditch.” Historically, the project section was in the upper reaches of the Lower Main Canal. This report refers to the segment of the El Dorado Canal above the Forebay as the Upper Main Canal, and the lower segment (including the project segment) as the Lower Main Canal.
Figure 1. Project Vicinity.
Figure 2. Project Location.
Table 1. Locations and Extent of Proposed Disturbances.

<table>
<thead>
<tr>
<th>Ditch Only Alignment (Alignment #1)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ditch Alignment Length (ft)</td>
<td>15,400</td>
<td></td>
</tr>
<tr>
<td>Trench Width (ft)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Trench Depth (ft)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Ditch Temporary Easement Width (ft)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Ditch Permanent Easement Width (ft)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Construction Staging Area (ac.)</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Total Acreage</td>
<td>46.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blair Road Alignment (Alignment #2)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Blair Road Alignment Length (ft)</td>
<td>8,200</td>
<td></td>
</tr>
<tr>
<td>Cross Country Alignment Length (ft)</td>
<td>2,600</td>
<td></td>
</tr>
<tr>
<td>Ditch Alignment Length (ft)</td>
<td>1,500</td>
<td></td>
</tr>
<tr>
<td>Trench Width (ft)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Trench Depth (ft)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Blair Road Easement Width (ft)</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Ditch and Cross Country Temporary Easement Width (ft)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Ditch and Cross Country Permanent Easement Width (ft)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Construction Staging Area (ac.)</td>
<td>13.2</td>
<td></td>
</tr>
<tr>
<td>Total Acreage</td>
<td>24.8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cross - Country Alignment (Alignment #2 Sub-Option)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Blair Road Alignment Length (ft)</td>
<td>3,200</td>
<td></td>
</tr>
<tr>
<td>Cross Country Alignment Length (ft)</td>
<td>4,000</td>
<td></td>
</tr>
<tr>
<td>Ditch Alignment Length (ft)</td>
<td>4,700</td>
<td></td>
</tr>
<tr>
<td>Trench Width (ft)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Trench Depth (ft)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Blair Road Easement Width (ft)</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Ditch and Cross Country Temporary Easement Width (ft)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Ditch and Cross Country Permanent Easement Width (ft)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Construction Staging Area (ac.)</td>
<td>13.2</td>
<td></td>
</tr>
<tr>
<td>Total Acreage</td>
<td>31.7</td>
<td></td>
</tr>
</tbody>
</table>
STUDY METHODS AND RESULTS

Prefield tasks included records searches and other archival research, preparation of field forms, GIS data collection and processing, and coordination with EID Environmental Review Analyst Bret Sampson. Mr. Sampson arranged for access to the project APE and accompanied the crew during the pedestrian surveys.

RECORDS SEARCH AND ARCHIVAL RESEARCH

Far Western requested a records search update from the North Central Information Center of the California Historical Resources Information System (CHRIS), to augment the records search done for Cardno Entrix in 2012. The updated records search included the project alignments and a one-quarter-mile radius around the alignments. The Information Center identified two known resources within the project APE: a previously recorded segment of the El Dorado Canal (P-09-3718H) and an historic-era ranch/homestead and former Boy Scout camp (P-09-3717H). Two other resources lay adjacent to the APE: the site of a Western States Gas & Electric Company (WSG&E) work camp (P-09-3675H) and another segment of the El Dorado Canal/Sierra Ditch (P-09-4147H). No Native American prehistoric or ethnohistorical resources are known to exist within the APE or the records search buffer. Confidential Appendix A shows the locations of the previous studies and known resources.

JRP examined standard sources of information that list and identify known and potential historic-era resources to determine whether Blair Road, the homestead/Boy Scout camp, and the portion of the El Dorado Main Canal in the APE had been recorded or evaluated previously. JRP also reviewed CHRIS lists of historic properties, lists of National and California Register properties, and the published handbooks on California Historical Landmarks and California Points of Historical Interest for the project vicinity. JRP also collected primary and secondary sources of information at EID’s offices in Placerville, the El Dorado County Museum Archives, the County Assessor’s office, and the County Recorder’s office, as well as JRP’s in-house library and digitized collections of newspapers available online.

NATIVE AMERICAN OUTREACH

On February 7, 2018, Far Western contacted the California Native American Heritage Commission (Commission) to request a check of their Sacred Lands files and a list of Native groups and individuals with traditional ties to the project area. The Commission responded on February 15, 2018, indicating that the Sacred Lands file search had been negative but cautioning that the negative search did not necessarily mean that no Native American cultural resources were present in the APE. The Commission also provided a list of Native groups and individuals. These data have been forwarded to the Bureau of Reclamation, who will be responsible for government-to-government consultation on the project. Far Western’s outreach correspondence is included in Appendix B of this report.

CULTURAL CONTEXT

Records searches and archival research provided the following contextual information for the project vicinity. The discussion of non-native history focuses on the known historic-era resources in the APE: Blair Road, site P-09-3717H, and the El Dorado Canal.

Native American History

The following is excerpted from Waechter et al. 2003. Because no Native American resources were found in the project APE, this section is greatly abbreviated. More detail can be found in Waechter et al. (2003).
Linguistic anthropologists like David Olmsted and Ken Whistler have analyzed the relationships and geographic distributions of language families in California, and developed theories about the patterns and the timing of human migrations. According to this theory, the earliest (that is, pre-4000 BP) archaeology in the Sierran foothills and on the west slope (as well as the crest) relates to the ancestral Washoe, whose territory by ethnographic times lay mostly along the crest zone and the eastern Sierran front. This earliest period is only hinted at in our current database, by the occasional fluted or wide-stemmed dart point or unusually thick obsidian hydration band. It is after about 4000 BP that human populations seem to have grown dramatically, both in central California and in the western Great Basin (Elston 1982; Elston et al. 1977:166; Heizer and Elsasser 1953; Moratto 1984:189, 199–203).

Many attribute this to changes in climate that brought winter precipitation, increased water supplies, and overall conditions that were more favorable to the plant and animal resources upon which the human populations depended. This coincides with the appearance of “Martis”-phase sites on the crest and the upper west slope. Where these people originated has been a key research issue for decades. Moratto speculates that “Martis is probably not ancestral to Washo (Kings Beach), but may represent Maiduan prehistory” (1984:303). This is far from certain, however, and conflicts with the linguistic data that indicate a late Maiduan arrival in central California. Elston and his colleagues (1994:14) have argued that it is time to retire the concept of a Martis “Complex” or culture, and use the term “Martis” simply to refer to Middle Archaic sites and assemblages in the Tahoe region and along the eastern Sierran front.

The “Good Times” of the Middle Archaic (Elston 1982) appear to have ended sometime over the last 1,000 to 1,500 years, depending on location. This was a time of severe demographic stress, as the human populations that had been expanding were now faced with “serious and abrupt declines in productivity caused by repeated and prolonged droughts” (Jones et al. 1999:138). Along the eastern Sierran front, as elsewhere, this period (the Late Archaic) was marked by increasing resource intensification, as people worked harder to obtain the same amounts of food on land that was now less productive than before. The bow and arrow replaced the dart, mortars and pestles became much more common, and well-made, curated tools were replaced by simple, expedient flake tools. Settlement patterns also changed. Houses (and, presumably, household groups) generally were smaller, more ephemeral in nature, and—as the period wore on—more dispersed (Elston 1982; McGuire 2000, 2002).

The Late Archaic archaeological record in the north-central Sierra seems much less visible than that for the Middle Archaic. This is quite possibly a result of the various changes in subsistence and settlement. There are, however, clear signs of late-period use of the crest zone and the west slope on the Eldorado National Forest and adjacent areas: Rose Spring, “Gunther,” and other arrow points are common, as are hydration readings of <3 microns (Jackson et al. 1994:II.A.4).

Many archaeologists believe that, in the last several hundred years before historic contact, the native groups of the Tahoe Sierra developed patterns of settlement, subsistence, trade, and mobility (or lack thereof) that were still in place when the first non-Indians arrived in the early nineteenth century. This final prehistoric period is what Elston and his colleagues have called the Late Kings Beach phase. It is marked by small, triangular arrow points of the Desert series (e.g., Cottonwood, Desert Side-notched), hydration readings of <2 microns, a shift from biface reduction to a core/flake technology, a much higher ratio of milling equipment to flaked stone implements, a lack of specialized or functionally specific tools, and much smaller and more dispersed encampments.

Post-contact History

Sustained Euro-American incursions directly impacting aboriginal populations in the project vicinity did not occur until after the Marshall gold discoveries in 1848 and the development and construction of the El Dorado Canal, ca. 1856. Although Native fishing locations are not specifically
reported along the South Fork of the American River near the project area, it is clear that the canal and mining activity in the river wiped out the spawning capacity of the river. Extensive lumbering also took place. All of these changes dramatically impacted the aboriginal lifeway, appropriating village and camping areas, completely foreclosing uses of other areas, and altering seasonal travel. As a result, Native populations seem to have consolidated into centrally located areas. Today the Native groups most closely associated with the project area are the Shingle Springs Band of Miwok Indians, the United Auburn Indian Community, and the El Dorado County Indian Council.

Non-Native History

The following contextual discussions are excerpted from the site records/evaluation forms presented in Appendix C.

Blair Road

During the late nineteenth century, Blair Road was a dirt track that forked off from the Carson-Tahoe Road just east of Sportsman’s Hall at Fyffe and led to sawmills owned by the Blair Brothers. Four Blair brothers, John, James, Matthew, and Robert, emigrated from Scotland to Ohio around 1850. News of the gold discovery in California drew John Blair to the West, where he settled in El Dorado County. By the time his brother James joined him, John had acquired timber land 11 miles east of Placerville and 160 acres adjacent to Carson Valley Road that included Sportsman’s Hall. The Hall, located at Fyffe on nineteenth-century maps, was an important waystation for travelers passing through the area. After Robert came west and joined them in the hotel business, the brothers began to diversify their interests and started in the lumbering business as mining operations and quickly blossoming mining towns created a great demand for lumber (Parker 1988; Sioli 1883).

The Blairs established their first sawmill, a steam-powered mill, near Five Mile House in 1856. Their second mill, Elkhorn Mill, established in 1860, created the need for the first leg of Blair Road. To get to Elkhorn Mill from Sportsman’s Hall, a traveler would head northeasterly on Carson Valley Road for approximately 0.4 miles where a branch road—likely the earliest leg of Blair Road—headed off to the northeast for approximately 0.25 more miles to the mill site (Figure 4). When the surveyor filed the map of T11N, R12E in 1874, Elkhorn Mill and the short segment of Blair Road were still present, and other roads, perhaps also early iterations of Blair Road, crisscrossed the section lines between Sections 25, 26, and 36 (Bureau of Land Management [BLM] 2018).

The Blairs’ lumbering practice was to operate a sawmill for about 10 years close to the timber stands they were harvesting, and then move their milling operations to a new location, closer to the fresh harvest. From the 1870s through at least the 1890s, the Blairs had two different mill sites in Long Canyon, north of the Elkhorn Mill. It was not until 1913 that they established a mill at the end of the road, currently known as “Old Blair Mill Road,” that forks off from Blair Road. The brothers operated that last mill in Long Canyon until 1925 (Parker 1988).

The segment of Blair Road above the Elkhorn Mill site may have been established in the 1870s by the Blairs as they scouted timber lands, but it was certainly in place by around 1880 when they moved their sawmill operation to the northeasterly corner of Section 26. Mapping from the early 1890s through at least the 1930s shows a static alignment of a road from the original point where it branched off from Carson Valley Road toward Elkhorn Mill, and then meandering in a northerly direction toward the Blair Mill Site in North Long Canyon. The alignment during this period may not have followed the current alignment exactly—mapping from the 1890s does not depict the junction of today’s Blair Road and Forebay Road as far to the east as it is today; however, it generally follows the current alignment (Figure 5). By the late nineteenth century, the road also provided access to a few scattered fruit orchards adjacent to Blair Road. For example, in 1891 Henry Schuhmann planted 200 fruit trees on his property that was bisected by Blair Road (BLM 2018).
Figure 4. Excerpt of 1874 Survey Plat of T11N, R12E, MDBM (red arrow indicates first leg of Blair Road branching off from Carson Valley Road to Elkhorn Sawmill).

Figure 5. Excerpt of 1891 USGS Placerville Topographic Map (Blair Road connected Sportsman’s Hall, located at Fyffe, to the Blair Sawmill—location depicted on the map—that operated from about 1880 into the early twentieth century).
By 1950, a few buildings, presumably residences, were present along Blair Road, with the highest concentration in the lower stretch closest to US Highway 50 and Sportsman’s Hall. Most of the road remained unpaved until 1964, when El Dorado County paved the 1.7-mile stretch between Forebay Road and the bridge over the El Dorado Main Canal. By 1976 a few more residences had been constructed along the lower stretch of the Blair Road. Today, the road has modern pavement and striping, and in 2017, El Dorado County replaced the Blair Road Bridge over El Dorado Main Canal and created shoulders at each end of the bridge.

Site P-09-3717H: Schuhmann Homestead/Looper Property/Boy Scout Camp

In the nineteenth century, this property was part of a 160-acre parcel located in the timberlands of El Dorado County between the Carson Valley Road and the South Fork of the American River, near Fyffe (the location of Sportsman’s Hall). The heirs of the original patentee, William Rice, sold the property to John and James Blair in January 1885 (El Dorado County 1885). The Blairs had been operating sawmills in the area since 1860 and presumably logged the acreage before selling it in April of the following year to Henry Schuhmann and Peter Roemer (El Dorado County 1886a). Roemer (perhaps Schuhmann’s brother) sold his interest in the property to Schuhmann later that year (El Dorado County 1886b). Schuhmann, an immigrant from Germany, owned the 160-acre parcel until October 1911, when he sold all but a 2.58-acre parcel to the El Dorado Fruit Land Company. (The 2.58-acre parcel is north of Blair Road and not part of the 25.94-acre parcel recorded for this study.) During his 34-year ownership of the property, the local newspaper reported that he planted 200 fruit trees (Mountain Democrat 1891), and that the “Schuhmann brothers” set up a placer mine on their property (Mountain Democrat 1892). An earthen dam on the property across a tributary of Long Canyon Creek and an associated ditch may have been developed as part of the placer mining operation and may have been used to impound irrigation water. A segment of the El Dorado Main Canal passes through the property, and Schuhmann may have irrigated his crops with water deliveries from the canal. Today the earth dam and associated ditch are still present; however, the dam is breached by the natural stream flowing through it (Parker 1988).

It is not clear if Schuhmann ever lived at the property. He was a lifelong bachelor and may have lived at Sportsman’s Hall, which was connected by Blair Road to his property approximately 1.5 miles away. If he did live on the property, it was probably on the 2.58-acre parcel he reserved when he sold to the El Dorado Fruit Land Company in 1911. He retained that small parcel until 1921. When Schuhmann died in Placerville in 1940, his obituary noted that he had operated his ranch as an apple orchard for many years (Mountain Democrat 1940).

By 1925, El Dorado County property ownership maps name the owner of the 160 acres (less the 2.58 acres) as “M. B. Doutt.” Research in local sources revealed very little information about M. B. Doutt or his wife Adele. Their property was listed for sale at public auction in 1928 as a result of delinquent taxes. On May 26, 1933, Arch and Laura Loomer of Sacramento bought the 157.42-acre property from E. K. Heller and Thomasina Heller. After 1934, the El Dorado County Recorder index shows many grant deeds from the Loomers to other individuals. They were almost certainly selling off subdivisions of the parcel.

Arch Loomer was a high school chemistry teacher in Sacramento from 1924 until his retirement in 1950. When he died in 1969, his obituary noted that he had resided in Sacramento for 46 years. Given that the Loomers’ activities did not receive press coverage in Placerville newspapers, nor did research in the local El Dorado County archives produce information about them, it can be inferred that they developed this property as a summer retreat during Arch’s summers off from teaching. The assessor’s effective date for buildings on the property is 1935, and forester Gary Gould, in an interview with Supernowicz (2006), stated that he believed the Loomer family had built the rustic three-story log house on the property while living in one of the smaller buildings. A 1956 recorded agreement document between the Loomers and the Boys Scouts of America (BSA), Oakland Area Council bears this out. That year, the Loomers sold the now 50-acre parcel, including all of the buildings, to the Boys Scouts of America, Oakland Area Council.
agreement document recorded along with the Gift Deed specifies that the grantors (the Loomers) will retain the right to use the “Loomer Cabin.” The agreement also provided that the grantees permit “persons who have cabins on said real property continue to have the right to use said cabins” and goes on to specify that Ollie Wilson will retain the right to use the cabin commonly known as the “Wilson Cabin” and Ralph Kendall will retain the right to use the cabin known as the “Kendall Cabin.” The 1940 census lists a Ralph Kendall who was a teacher living in Sacramento, and an Ollie Wilson who was a merchant living in Sacramento. A retrospective about Camp Loomer published online by the Boys Scouts, San Francisco Bay Area Council (SFBAC), noted that Wilson and Kendall were both teachers. It appears that the Loomers allowed their friends Kendall and Wilson to build small summer cabins on their property, around 1933.

In 1956, the Loomers sold their 50-acre parcel, including all of the buildings, to the Boys Scouts of America, Oakland Area Council. A newspaper article in 1957 covering the new acquisition of “Camp Loomer” stated that “this camp is in an almost wild state and will be preserved in its natural beauty with as little building as possible, just enough for sanitation and safety” (Oakland Tribune 1957). The 1957 description of the wild state of the property casts some doubt on the 1935 date of construction of the three-story log house. Loomer entered into an agreement with the Boys Scouts at the time of the sale that reserved to him a lifetime estate in the property and the privilege of using the camp and the Loomer cabin—presumably the log house. The two small cabins on the property, near the entrance, were present at the time of sale in 1956. A retrospective about Camp Loomer published online by the Boy Scouts SFBAC noted that two small cabins were owned by a Mr. Wilson and Mr. Kendall who also taught school in Sacramento, and that they too were allowed to continue to use them per the terms of the agreement between Loomer and the Boys Scouts (SFBAC 2018). The SFBAC did not add any permanent structures to the property.

By the 1970s, the SFBAC had a half-dozen other rustic camps in the Sierra and elsewhere in northern California. Declining use of Camp Loomer, combined with high maintenance costs and encroachment of residential development, led the council to its decision to close the camp. In 1976, the Boys Scouts sold the property to Margaret C. Smith, who owned it until 1998. According to a personal interview by the author with Gary Gould, the forester for the property owner, Smith built the open carport north of the main house during her tenure on the property. The current owners bought the property in 1998.

El Dorado Canal

The El Dorado Main Canal, constructed between 1873 and 1876, historically ran from the vicinity of Kyburz to Placerville. In 1916, the canal was purchased to provide water for the El Dorado Power Plant near Pollock Pines. The portion of the canal below the powerplant forebay was sold to El Dorado Water Company (EDWC; predecessor of EID) in 1919 and became known as the El Dorado Main Canal.

Portions of the El Dorado Canal have been evaluated previously. Most of these evaluations have focused on the upper portion of the canal from Pollock Pines to Kyburz, where the historic-era mining ditch was converted to hydroelectric purposes in the 1920s. The upper portions of canal were found to lack integrity and, despite its importance as a mining canal in the 1870s, it was found not eligible for the National Register. Portions of the canal’s support structure consisting of dry laid granite rock walls, however, were found to be eligible for the National Register under Criterion C as a discontiguous historic-era district.

Only three segments of the lower portion of the canal from Pollock Pines to Placerville have been evaluated previously. This part of the canal was originally used to supply water for hydraulic mining districts in the vicinity of Placerville. As hydraulic mining declined after the 1884 Sawyer decision banning most hydraulic mining, the canal was increasingly used for irrigation of orchards in the vicinity of Camino and for municipal purposes in and around Placerville.
The Gold Rush and Early Water Development in the South Fork American River Watershed, 1850s–1900

Discovery of gold at Sutter’s saw mill on the South Fork of the American River (South Fork) at Coloma set off the California Gold Rush in 1849–1850. As word spread the first influx of people arrived by ship from all over the world. They came up the river by boat from San Francisco to Sutter’s Fort and then headed overland to the gold district through Folsom. With good overland freight access from Sacramento, Placerville became the gateway to Coloma and the first major center for commerce as mining spread throughout the Sierra gold belt. Emigrants later arriving by wagon trains from the east and crossing the Sierra Nevada also found passage by way of the South Fork of the American River canyon arriving at Placerville, the first supply town encountered in the gold fields (Delgado 1990; Moehring 2004; Rodman 1963).

Water was an essential element in extracting gold from mineral lands by means of placer and hydraulic methods of mining. During the 1850s and early 1860s, rules and regulations established by the miners themselves, and varying from district to district, came to govern the appropriation of water from the streams. In the absence of federal or state laws governing the use of water, among the fundamental principles established in the mining camps and districts were recognition of the rights to water through prior appropriation and continued beneficial use. The rules established by these miner’s associations evolved into the organization of more elaborate systems of local customs and laws that provided for the establishment of rights of way for ditches and canal construction across public land for mining and other purposes (Hutchins 1956).

As the ability to direct water to desired mining locations grew more important, companies organized for the purpose of diverting the water from natural watercourses into canals and ditches. Most of these early water conveyance features were relatively short (less than 10 miles) and used basic engineering, usually simple ditches cut into the surrounding soils, or where necessary blasted through rock to carry water at a hydraulic gradient to its place of use (JRP 2000).

As hydraulic mining developed, an engineer from New York, John Kirk, had an idea for a canal system in the South Fork of the American River watershed capable of providing a steady source of water through the dry months with sufficient pressure to operate hydraulic mines. The water storage and conveyance system would require the creation of several large storage dams forming reservoirs high in the Sierra Nevada and extending a high-line canal from Kyburz down the South Fork of the American River Canyon to the placer mining districts surrounding Placerville. While engaged in other smaller canal ventures in El Dorado County during the 1850s, he initiated his surveys of potential routes for his major hydraulic mining water supply project on the South Fork (Wee 2004).

Over subsequent decades John Kirk developed smaller ditches in the lower canyon but was only able to conduct surveys and preliminary work on his larger vision. During the 1860s, with the help of Francis A. Bishop, a prominent San Francisco financier and another early mining canal proponent, Kirk surveyed the line for the El Dorado Canal, filed water appropriations for the upper end of the canal, and began preliminary work surveying dam and reservoir sites. By 1872, Kirk and Bishop had filed appropriations on local streams feeding into the South Fork of the American River covering 350 square miles (Wee 2004).

By the 1870s, interest in hydraulic mining in the Sierra Nevada was increasing as the Comstock Lode waned. During this period, the ascendency of hydraulic mining required extensive investment of capital and mining operations consolidated and attracted investors. Kirk and Bishop needing more capital to complete the project sold their water rights and their preliminary work to the El Dorado Water and Deep Gravel Mining Company (EDW&DGM) in 1873. Bishop stayed on as a board member and supervising engineer. While the company purchased other canals as well, the El Dorado Canal was to be the water source for extensive hydraulic mining operations. The company was able to complete most of the lower canal in 1874, an earthen ditch measuring four-to-six feet deep, four-to-five feet across the bottom, and 12
to 15 feet across the top. Many workers were employed on the project, including Americans, recent immigrants, and groups of Chinese contract laborers. The upper canal’s construction took two more years. The challenges posed by rough terrain and the high cost of lumber for trestles resulted in the construction of dry-laid granite bench walls to support flumes where needed. The extensive rock construction and quality workmanship of the 40-mile canal was noted by newspapers of the time. In the end, the canal cost $650,000 to build, an astronomical sum at that time (Adams 1929; Supernowicz 1988; Wee 2003, 2004).

Over time EDW&DGM consolidated several earlier placer mining sites south of Placerville and purchased other sites to the north. The water from the El Dorado Canal yielded significant sums from these mines and revived mining in the area around Placerville in the late 1870s. Water delivered by the main ditch fed into several regulating reservoirs, including Blakeley, Reservoir Hill, Placerville, Coon Hollow, and Weber. These reservoirs allowed hydraulic mining operations to use massive quantities of water in 10-hour bursts. The reservoirs would then recharge over the remaining 14 hours without the company enlarging the main canal to provide the same quantity of water over a 24-hour period. The use of regulating reservoirs also reduced wasted water. The success had investors looking at expanding the reservoir and ditch systems by 1880. The 1884 Sawyer Decision, however, effectively checked large-scale hydraulic mining in the Sierra Nevada. The end of hydraulic mining created problems for canals like the El Dorado, as hydraulic mining had been their main source of income. EDW&DGM shifted some operations to drift mines and used increasing amounts of water for milling (crushing) of quartz to extract gold. But the lack of mining income posed a serious financial problem for EDW&DGM, and the company finally sold the canal in 1906 (Wee 2003, 2004).

The El Dorado Canal Transitions to Provide Hydroelectric Power and Water Service to Agricultural and Domestic Water Users, 1907–1920s

Between 1907 and 1916, the El Dorado Canal was sold numerous times, and portions of the water conveyance system were allowed to fall into disrepair, although the water system continued to deliver water down to the Placerville region. In 1916, the canal was sold to WSG&E. Sales of the water system over the previous decade had often included companies with an interest in hydroelectric power generation. WSG&E was the first purchaser with the necessary capital to carry the project forward. The company formed from the consolidation of several smaller companies and sought new water rights and hydroelectric power sites to provide cost-effective electrical power. The company had already acquired the American River Electric Company’s plant on the South Fork of the American River north of Placerville. Purchase of the El Dorado Canal and other water conveyance holdings of the former EDW&DGM insured that water could be delivered year-round to the existing power plant (Adams 1929; Wee 2003).

Immediately following the purchase, WSG&E announced that the existing water conveyance system, including the El Dorado Canal, and any additional high mountain reservoirs established by WSG&E would be dedicated to hydroelectric power development. Previous water users were grandfathered in and would continue to receive their existing allotments of water; however, increased agricultural and domestic or municipal uses would not be accommodated. This caused consternation among residents of Placerville and among the farmers and fruit growers located along the ridge to the east to Camino. The El Dorado Canal was the main water supply for the city. The Placerville Water Company (PWC), which supplied the central and eastern part of the city, came under the influence of Francis A. Bishop in 1860. When Bishop sold his water rights and interest in the El Dorado Canal to EDW&DGM in 1873, provision was made to provide water to the city from the canal. Similarly, the canal provided water to orchardists along the ridge from Placerville to Camino. The area was rapidly expanding its fruit crops in the years around World War I, and numerous orchards were planted in the foothills on the west side of the county which would require additional irrigation water over the coming years. Restricting water deliveries for these two groups to the existing level would inhibit further growth (Wee 2004).
Local farmers, orchardists, and businessmen joined together to form the El Dorado County Water Users Association. In 1917, these local groups took their concerns and complaints about water shortages to the California Railroad Commission, the state body regulating public utilities. The Railroad Commission found the arguments of both sides had some merit and ruled that both irrigation and hydroelectric power were valid public uses of water. The Railroad Commission also indicated that the area had sufficient water for both uses and that the two bodies should form a compromise. After two years of negotiations (1917–1919), the local water users secured a determined amount of water for domestic and irrigation purposes that provided for regular growth to be supplied to the EDWC, which had been formed by the local water users group. The agreement between the EDWC and WSG&E not only established a baseline water supply, it also transferred the lower part of the canal between Pollock Pines and Placerville to EDWC. Continuing water service to all locations supplied through this lower segment of the ditch system also became the responsibility of EDWC (Adams 1929; Wee 2004).

The continuing growth of agriculture through the 1920s made it clear that EDWC would need to develop additional water sources, as WSG&E limited its sales of water to EDWC to the amount contracted for in 1919. Two potential sources were available, Weber Creek and the North Fork of the Cosumnes River and its tributaries to the south. In 1922, EDWC took measures to attain both. Refinancing as the El Dorado Water Corporation, the corporation undertook construction of a reservoir on Weber Creek and purchased an option on the Diamond Ridge Water Company, which operated in the North Fork of the Cosumnes River watershed. The attempt to develop both sources proved too much, however, and the El Dorado Water Corporation ran into financial difficulties (Adams 1929; Wee 2004).

Agriculture: Fruit Culture in the Placerville-Camino District, 1880s–1920

Fruit culture during the Gold Rush era and in subsequent decades was incidental to the mining economy of California. By the closing years of the nineteenth century, however, it had become one of the chief industries of the state. A local citizens’ committee reported on irrigation in several of the fruit districts of El Dorado County in 1883, noting that fruit growing extended as far as 30 miles east from Placerville. Facilities for irrigation on a large scale in this “Central Region” of the county lying between the South Fork and Weber Creek were rated as good to excellent, with the area being served by the EDW&DGM’s extensive canal system. As gold mining declined and horticulture advanced, the extensive systems of canals lacing the mining districts were put to new uses and ultimately became as important for irrigation as they had been for mining. The principal irrigation ditches in the county in the 1890s were owned by the California Water and Mining Company, the Natomas Water & Mining Company, the EDW&DGM, and the Park Canal & Mining Company. All of these companies originally constructed their canal systems to serve the mining interests of the county (State of California 1892).

Along the ridge between the South Fork and Weber Creek that was served by the El Dorado Canal (formerly a portion of the lower EDW&DGM canal), the acreage planted with fruit trees continued to grow at a relatively constant, but slow, pace from the late 1890s until the early 1910s, when higher prices for fruit encouraged farmers to accelerate the planting of orchards in that district. Wherever water was available, new orchards sprang up. Along the ridge above Placerville, around Camino, and in the Gold Hill and Missouri Flat sections of the county, new orchards on irrigated land continued to be laid out through the late 1910s at a brisk pace. The Mountain Democrat reported in 1917 that many acres of new orchard would come into bearing in the Placerville District within the next two or three years, adding materially to the tonnage of pears, prunes, plums, peaches, apples, and walnuts, sent to the local packing sheds and shipped out of the region. In fact, the area east of Placerville up to Camino became well-known in the World War I era as “Fruit Ridge,” a designation that appeared on USGS topographic sheets in subsequent years.

With all of the new orchards being planted, water supply became an increasing concern to growers investing in tree crops. The number of acres irrigated in the district served by the El Dorado Canal was
estimated variously by different witnesses of the complainant and defendant in the El Dorado County Water Users Associate versus Western States Gas & Electric Company case as from as much as 3,409.52 acres down to 3,148.50 acres (State of California 1919a). Either number represents a substantial increase over the acreage irrigated at the turn on the century.

As early as 1913, the El Dorado County Board of Trade appointed a special committee to look into the legal aspects of the water question. They warned farmers and orchardists of the need to establish and protect their water rights through continuous use, even as consumers of water supplied by the canal companies. The Railroad Commission, noted the committee, was charged with protecting their water supply, but it would require attentiveness on the part of irrigators to ensure future water deliveries (Mountain Democrat 1913).

In fact, over the next several years, the farmers and irrigators of the region did exhibit vigilance in protecting their interests and the future water supply for irrigation uses. WSG&E, which acquired the El Dorado Canal in 1916, had other plans for the water diverted into the El Dorado Canal and the waters stored in its high mountain reservoirs. Not until 1919, after hearings before the Railroad Commission failed to resolve the issues between the parties, did the two sides negotiate an agreement that ensured certain waters would be available for both irrigation and hydroelectric power development from the South Fork and the El Dorado Canal.

City of Placerville and Municipal Water Supply from El Dorado Canal, 1850s–1920

The City of Placerville’s domestic and municipal water service was provided by private corporations until 1920, when the City stepped in to take control of distribution of the municipal water supply within the city limits. The primary distributor of water within the town was the PWC, and its successor in interest was the Placerville Water Works (PWW). After completion of the El Dorado Canal in 1876, EDW&DGM had provided a separate distribution network to the lower section of town, as well as selling water from its canal network wholesale to the other private water company providing water service in Placerville.

Alexander Hunter, Alfred Bell, and John L. Thober incorporated PWC in 1853 for the purpose of providing water to Placerville from adjacent springs, wells, and canals to generate mechanical power, for manufacturing, for domestic and certain municipal uses, and for irrigation of yards and gardens (PWC 1853). The following year PWC completed the first municipal water, system drawing its water supply from nearby springs and local watercourses such as Hangtown Creek and Cedar Ravine, and by purchasing water from the South Fork Canal Company when needed.

In 1873, Francis A. Bishop, president of PWC at the time, had reorganized the company into a new corporation and sold its canals and water rights to EDW&DGM (El Dorado Republican 1873). As partial consideration, Bishop was given a long-term lease agreement for delivery of water for non-mining uses within the city of Placerville from the El Dorado Canal at below-market rates for a term of 50 years. If, or when, Bishop desired to sell his water works and reservoirs in Placerville, EDW&DGM was to be given the first right of purchase and the right to match any offer made for Bishop’s water properties in the city (EDW&DGM 1873). Nevertheless, Bishop transferred the contract to the PWC in 1893, and the PWW was incorporated that same year to take control of the municipal water system previously operated by the PWC (Bishop 1879). The company operated under the 1873 agreement between Bishop and EDW&DGM to furnish water to the city of Placerville for all purposes, except mining, for a period of 50 years. The PWW continued to purchase water under this contract until 1920 (State of California 1919b).

By 1913, the PWW served about 1,500 customers and EDW&DGM served perhaps another 500 (State of California 1919b). The distribution mains of the PWW covered approximately three-quarters of the city, mostly the central and upper districts of the town; however, inadequate pressure was evidenced by the difficulty the company had in getting water under adequate pressure on a continuous basis to residences on the hillsides. The remaining population living outside the PWW’s distribution system in the
lower part of town purchased water directly from the owner of the El Dorado Canal. Thus, the owner of the El Dorado Canal provided water wholesale to the PWW and was both a wholesaler and retailer of water (Hyde 1913; State of California 1919b).

The main source of public water supply for the city of Placerville after the contract was made between Bishop and EDW&DGM was the South Fork. Since 1876, this water supply had been taken from the El Dorado Canal. The regulating reservoir at Five Mile House (Blakeley Reservoir) served as the primary facility for controlling water flows into the lower ditch distribution network of the El Dorado Canal system. Other lower distribution reservoirs released water to keep the system under pressure and to meet municipal demand in Placerville (Mountain Democrat 1913).

Except when shut down for repairs or closed due to an outage, the El Dorado Canal supplied the city with sufficient water to meet all of its needs. The major problem with the municipal water supply was inadequate pressure in the central and upper portions of the city to provide adequate fire protection due to the low elevation of the terminal impounding reservoirs owned by the PWW. The City of Placerville in 1919 decided to purchase the distribution systems and assume the public service obligations associated with municipal water service; the following year it did so. The City planned to improve water service to the community by providing new terminal reservoirs to replace those owned by the PWW. By taking it directly from EDWC to the top of the bluff on south side of town and storing it in a new reservoir, water could be delivered to the upper part of town and also delivered in a connecting pipe down the principal pipeline into the center of town. This would create sufficient pressure to enhance fire protection. Second, the City planned to acquire Forni Pipeline from the EDWC, and the two old private water systems would be connected for the first time, resulting in better fire protection and domestic service (State of California 1919c). With the exception of the small town of Camino with its population of around 150, there were relatively few permanent communities of importance in the watershed of the South Fork above Placerville up to the point of diversion of the El Dorado Canal at Cedar Rock (Hilscher 1916).

El Dorado Irrigation District, 1925–2000s

The EID was formed in 1925 and succeeded the EDWC and El Dorado Water Corporation in 1927. EID covered 30,703 acres between Pollock Pines and west of Placerville. The district was only about a mile wide at Pollock Pines where the main canal, purchased from WSG&E, emerged from the Forebay to about seven miles wide west of Placerville. The district formed under the California Irrigation District Act of 1913, which had its origins in the Wright Act of 1887. Under the laws governing irrigation districts, EID had the ability to tax users for the maintenance and operation of the system, and also had the ability to issue bonds to finance additional work. The system that EID managed in 1927 included some 70 miles of main and lateral distribution ditches, along with some main pipelines for delivery of municipal water within Placerville and for assorted industrial water users. Water use within the district had nearly doubled since the 1919 agreement, and was still a limiting factor in continued agricultural development of the area (Adams 1929; Wee 2004).

The challenges of securing water continued to be a problem for EID. In 1928, engineer S. J. Norris provided the irrigation district with a plan for securing additional water through development of a new reservoir in Hazel Valley, now known as Sly Park Reservoir or Jenkinson Lake. EID soon found that the Sly Park project was too large to undertake during the economic depression of the 1930s. Burdened with debt, EID appealed to the Reconstruction Finance Corporation for financing. With this money they were able to acquire the Diamond Ridge Water Company and its canals and water rights along the North Branch of the Cosumnes River. Through the federal Works Progress Administration, EID was able to rehabilitate the Diamond Ridge system and secure water for the western portions of the district. Federal support, however, did not permit EID to continue plans to develop the Sly Park Reservoir (EID 1952; Starns 1999; Wee 2004).
The acquisition of the Diamond Ridge facilities and the raising of Blakeley Reservoir by five feet was sufficient to get the district through World War II, but water remained a limited resource. Following the war, EID requested the help of the US Bureau of Reclamation to design and develop the Sly Park project. Congressman Clair Engle, who represented this area, took up the project and incorporated Sly Park into the authorization for the Folsom Dam as part of the Central Valley Project. Construction of the Sly Park Dam began in 1951 and was completed in 1955, with EID able to secure water supply from the project (EID 1952; Parker 1988).

Post-World War II development in the lower foothills nearer Sacramento replaced livestock grazing with residential tracts, which induced new areas to join EID as their water demand increased. The district gained 11,200 acres to the southwest between Hanks Exchange and Shingle Springs, and by 1960 EID was deemed the best means of supplying water from Pollock Pines west to the county line. The existing EID system that had developed over time from a variety of old mining ditches (including the lower portion of the El Dorado Canal) was inefficient, losing substantial water through seepage and evaporation. Working with the Bureau of Reclamation, EID began developing a piped distribution system in the 1950s. Sometime between 1950 and 1976, EID built a water treatment plant known as Reservoir 1 just north of Sportsman’s Hall. Concurrently, EID developed a piped distribution system to deliver the treated water to domestic water users, abandoning the lower ditch for that purpose. The lower ditch below Reservoir 1 continued to deliver some raw water, but by 1960 sections west of Camino, near Five Mile Terrace, and near the Placerville Airport had also been realigned and piped. The drought in the late 1970s encouraged further piping in order to avoid water loss through evaporation and seepage. Extensive piping led to the eventual abandonment of the El Dorado Canal downstream of the Alder Drive Bridge. Since EID abandoned the lower canal below Alder Creek Bridge, some property owners have altered the ditch where it crosses their property, in some places actually filling it in (EID 1952, 1960; Jones & Stokes Associates 1977; Michon and Associates 1990; Cardno Entrix 2012; Reclamation 1960; Starns 1999).

EID continued to grow in the later part of the twentieth century, subsuming other irrigation and water districts. In 1995 EID acquired the hydro-electric generation facilities at the El Dorado Power Plant, north of Pollock Pines. This facility was a Pacific Gas & Electric (PG&E) plant, the origins of which date to 1919 when the El Dorado Canal was divided between WSG&E and EID’s predecessor. WSG&E had greatly improved the upper portion of the canal and established the plant, merging with PG&E in 1928. PG&E made several improvements, including constructing the Esmeralda Tunnel and Slide Tunnel, as well as upgrading earlier wooden construction in multiple locations.

Serious flooding and a mechanical failure in the powerhouse in 1993 led PG&E to sell the system to EID. While the entirety of the historic El Dorado Canal is again in EID’s ownership, the different historical uses of the two portions have resulted in different conditions. The upper section was highly modified in the 1920s, and maintenance also resulted in changes to the canal. The lower canal no longer functions as it did historically to deliver water down to Placerville with turnouts along the way serving customers. The distribution system has overwhelmingly been converted to pipeline, and the segment between Forebay and Reservoir 1 that is still operating as open ditch serves only two irrigators. The abandoned ditch below Alder Drive Bridge has lost substantial integrity through accumulation of sediment and vegetation, piping, infill, and the construction of modern road crossings (Wee 2003).

ARCHAEOLOGICAL FIELDWORK

The pedestrian survey was conducted by a two-person crew on January 29 and February 1, 2018, accompanied by the EID representative. The survey included linear segments along the proposed pipeline route in Blair Road and cross-country areas, various access roads, and seven potential staging/laydown areas (see Figure 3b, Alignment 2). The crew surveyed roadways by walking one on either side of the road.
country areas were covered using 10–15-meter-wide transects, and staging areas were covered in five- to 10-meter-wide transects. In areas where thick duff obscured the surface, the archaeologists periodically scraped the duff away to expose the ground surface. Any open ground or rodent backdirt also was examined.

The survey did not identify any previously undocumented archaeological or historical resources. One previously recorded site, P-09-3717H, partially overlapped one of the staging/laydown areas. This historic-era property includes several standing structures and other features. The Far Western crew was joined by architectural historian Heather Norby from JRP, who conducted updated recordation of the standing structures. The entire property was examined, and structures and features were described and photographed. An updated site map was also created, using a hand-held Trimble® GPS unit with submeter accuracy. The updated site record is included in Confidential Appendix C.

HISTORIC ARCHITECTURAL FIELDWORK

On December 21, 2017, and February 2, 2018, Heather Norby (accompanied on December 21, 2017, by JRP research assistant Shelby Kendrick) visited the project area to inspect and take digital photographs of representative examples of the El Dorado Main Canal below Forebay Dam, representative photographs of Blair Road between Forebay Road and Lincoln Highway, and photographs of site P-09-3717H. JRP also recorded and evaluated these resources. The site records are included in Appendix C; the evaluations are presented below.

EVALUATIONS

This section presents discussions of National and California Register eligibility of Blair Road, site P-09-003717H (Schuhmann Homestead/Loomer Property/Boy Scout Camp), and the El Dorado Main Canal.

Blair Road

Blair Road follows the general alignment of a nineteenth-century road developed by early settlers to El Dorado County, John, James, Matthew, and Robert Blair. The first short segment was developed by 1860 to provide access to Elkhorn Mill, the second sawmill established by the Blair brothers, and the remainder of the road’s alignment was generally in place no later than 1880. The road is associated with the Blair brothers’ various milling operations throughout this part of El Dorado County between 1860 and 1925. The Blairs’ development of El Dorado County around Pollock Pines is a significant part of the early history of the county, and Blair Road is associated with that significance under National and California Register Criteria A/1 at the local level. However, Blair Road does not retain integrity to the period closely associated with the Blair Sawmills, 1860–1925, and is therefore not eligible for listing in either register under Criteria A/1. It has lost integrity of design, materials, and workmanship to this period because it is no longer a crude dirt road, but rather a modern 20-foot-wide road with asphalt paving, modern striping, and a modern bridge. Its integrity of location may have also suffered by refinement of the alignment during the twentieth century. In addition to those losses of integrity, the road has lost integrity of setting and association, because Blair Road no longer passes by, or leads to, any of the Blair sawmills. And finally, feeling, the most subjective of integrity considerations, has been substantially altered, because this modern road bears no resemblance to the dirt track used during the period of association with the Blair sawmills.

Similarly, while Blair Road has associations with the four Blair brothers who contributed to the early period of the county’s settlement, it is not eligible under National or California Register Criteria B/2, because it has virtually no historic integrity to the period of association with John, James, Matthew, or Robert Blair. The road as it is today would be unrecognizable to the early Blairs and to the workers they employed in their lumber business.
Blair Road is not significant under National or California Register Criteria C/3, because it is not an important example of a type, period, or method of construction, and has no association with a master engineer or builder. The road—a two-lane asphalt-paved mountain road—is a common and ubiquitous property type that can be found throughout El Dorado County, the state of California, and the nation. There is no indication that there were any engineering or construction innovations made during the course of its development and improvement that would merit significance under these criteria.

Blair Road is not significant under Criteria D/4 of the National or California Registers as a source, or likely source, of important historical information, nor is it likely to yield important information about historical construction methods, materials, or technologies. The history of the road’s development and use are well documented through photographic and textual records, and in its current modern state, it cannot convey any historically significant information about the earlier period of its use.

In sum, Blair Road is not eligible for listing in the National or California Registers under any criteria, because it has lost nearly all of its historic integrity to the period of its associations with significant events and people (1860–1925) and therefore cannot convey its association with that period.

Site P-09-3717H: Schuhmann Homestead/Looper Property/Boy Scout Camp

The built environment on this property consists of a collection of buildings constructed between 1933 and 1956, a carport built after 1975, and an earthen dam and ditch that may date to the 1890s. The heavily dilapidated building (Figure 8 in attached site record [Appendix C]) appears to be a barn dating to the Schuhmann period of occupancy, or a hastily erected shelter where the Loomers lived while building their log house. A segment of El Dorado Main Canal is also present on this property (see evaluation, below).

The earthen dam and short segment of ditch on the property may be associated with placer mining that the local newspaper noted the “Schuhmann brothers” tried on their property in 1892. There is no further mention of a mining operation on their property after that point. After trying their hand at placer mining, it is probable that Henry Schuhmann used the dam to impound irrigation water. The dam is a simple earth embankment that has been severely breached and has an associated earthen ditch. These structures are not historically significant under National Register Criterion A or California Register Criterion 1 within the context of placer mining in El Dorado County, an endeavor that had a 40-year history by the 1890s and was widely practiced by property owners trying their luck at extracting more gold from the hills long after the peak period of gold mining the Mother Lode. The dilapidated building shown in Figure 8 of the attached site record (Appendix C) may have been built by Schuhmann during the period when he farmed an orchard on the property. The building is not historically significant for this possible association, because there is no evidence that Schuhmann’s orcharding activities were anything other than typical. This partially collapsed structure does not convey anything historically significant about the development or use of this property, or about the development of the Pollock Pines area.

The collection of buildings constructed by Arch and Laura Loomer and their friends Ralph Kendall and Ollie Wilson are not historically significant under National Register Criterion A or California Register Criterion 1, because they are not associated with any events that have made a significant contribution to any pattern of local, state, or national history. The Loomers and their friends, all school teachers, constructed these buildings between 1933 and 1956 as a summer retreat from the Sacramento Valley. There is no evidence that these buildings had any significance to the development of the Pollock Pines area.

The carport built by Margaret C. Smith is less than 50 years old and is a simple utilitarian structure that does not have any historical significance under these criteria. During the approximately 20-year period when the Boy Scouts used the property, they did not construct any permanent buildings on the property, and they did not use the existing buildings. There is no built environment present on the property that is associated with that period of use.
None of these buildings are significant under National Register Criterion B or California Register Criterion 2, because none of the individuals directly associated with their construction or use are persons who made demonstrably important contributions to our history. Henry Schuhmann, who is associated with the earth embankment dam and short earthen ditch, was a typical farmer in El Dorado County and there is no evidence that he made any demonstrable or specific contributions to history. Arch and Laura Loomer who are responsible for almost all of the built environment on the property appear to have been typical members of the Sacramento community who did not make any specific contributions to history that merit significance under these criteria. The same is true for Ralph Kendall and Ollie Wilson; nothing rises in the historical record to suggest that either of these men made historically significant contributions to any facet of our history. Further, if it were determined that any of these individuals had in fact made an important historical contribution, their summer homes would not be a good representation of their significance.

None of the structures on this property meet National Register Criterion C or California Register Criterion 3 individually or as contributors to an historic district. The Loomer log cabin and the small Kendall and Wilson cabins reflect a Rustic style of architecture, commonly used by the National Park Service from the 1910s into the 1940s for buildings in the national parks, and popular among private owners of residential properties in mountainous regions. This style of architecture was a natural outgrowth of the romanticism in the late nineteenth and early twentieth centuries that consciously embraced wilderness and nature, placing positive value on experiencing and protecting the natural environment. An increasing number of Americans were living in urban environments at the time, and many in the country responded by investing wooded and mountainous places with aesthetic, ethical, and spiritual values. The changing attitude about the country’s former western frontier is exhibited in the early twentieth century conservation ethic and influenced architectural style in rugged and remote places.

The Rustic style also draws from the earlier twentieth-century Arts and Crafts movement that emphasized the use of natural materials and architectural design that complements the natural environment. Design and construction of buildings that intentionally employed indigenous materials such as timber logs, bark siding, stone, and crafted wood ornamentation represents cultural values about nature, a reflects the desire for an appropriate architectural design to visually harmonize with what was considered a wilderness setting. This follows the picturesque landscape ideals that were popular in the late nineteenth century, where buildings were designed to respond to their sites. Rusticity provided a vernacular hand-crafted appearance to highlight a pleasant contrast to cities and urban living. The wooded or natural surroundings and rustic buildings provided escape from the urban landscape and the fashionable, and arguably more sophisticated or modern styles of the period, such as Classical Revival or Moderne. It was also practical to use locally available natural materials, considering the difficulty and cost of importing building materials to remote locations. Rustic style buildings were built using traditional building forms, with gable, moderately to steeply pitched roofs, simple floor plans and porches, and the use of roughly prepared timber and stone materials. Buildings emphasizing this concept of non-intrusive architecture included cabins, cottages, summer homes, hotels, and public/institutional buildings. Many examples of privately owned Rustic buildings were both designed and built by the owners, which appears to be the case for the buildings on this property.

These buildings were built following the basic tenets of the Rustic style favored in mountainous areas, like the Sierra Nevada, in the early to mid-twentieth century, and do not individually or collectively express that ideal to a degree that is historically significant. The Kendall and Wilson cabins are very small wood-frame expressions of the style built according to exceedingly common methods and materials. The Loomer cabin is larger and more aesthetically interesting with its log construction and mortared stone foundation; however, beyond the choice of building materials there is little other articulation of the style. In addition, it has suffered loss of integrity from prolonged neglect, and from an addition using incompatible materials on the east side (see Figure 6 in attached site record [Appendix C]).
The earthen embankment dam and short ditch segment do not meet National Register Criterion C or California Register Criterion 3, because they are very commonly employed earthen structures built for impounding and conveying water, and because the dam has lost integrity to the point that it no longer functions as a dam; water flows unfettered through a large breach in the embankment.

None of the buildings or structures on this property have significance under National Register Criterion D or California Register Criterion 4, because they were built according to typical methods and means of the time that are well-documented in the historic literature.

The El Dorado Canal

Past evaluations of portions of the canal have generally dealt with the upper canal, above Forebay Dam at Pollock Pines and up to the point of diversion on the South Fork American River near Kyburz, or the lower canal between Forebay Dam and the downstream end near Placerville. They have been treated separately because of their separate twentieth-century historical contexts: the upper canal is associated with hydro-electric power generation, and the lower canal is associated with irrigation and domestic water supply.

Upper Canal

The upper canal was first comprehensively documented as a linear water conveyance structure in 1990 by archaeologist A. Glenn Caruso, of Caruso Cultural Resources Management, who recorded the canal between Kyburz and the El Dorado Forebay as CA-ELD-511H. Laurence H. Shoup prepared a historical overview and significance evaluation for the canal to accompany the recordation. While recognizing the canal as an important water development feature associated with the era of hydraulic mining, Shoup’s evaluation hinged on the modernization, enlargement, and reconstruction of the upper canal in the 1920s by WSG&E. He concluded that, “as a whole,” the upper canal as it then existed was more directly associated with its use for supplying water for hydro-electric power generation from the point of diversion at Kyburz to the Forebay near Pollock Pines, therefore it lacked historic integrity to the earlier mining period and was no longer able to convey significance for its association with hydraulic mining in the nineteenth or early twentieth century. Shoup also argued, however, that one type of resource within the canal system retained its historical significance and integrity: the dry-laid granite rock walls built in the 1870s that for the most part survived the canal reconstruction of the 1920s. He stated that the rock walls were significant at the local and state level of significance as a “discontiguous district” associated with the Chinese (National Register Criteria A and C, for ethnic heritage), and as an important example of late nineteenth-century construction (National Register Criterion C, for engineering). The California State Historic Preservation Officer (SHPO) concurred that the system as a whole lacked integrity and was not eligible, but agreed that there was some potential for the rock walls to be eligible under National Register Criterion C; the SHPO disagreed with Shoup’s finding of significance under National Register Criteria A and C for its association with Chinese laborers, as no concrete evidence of “Chinese” association in construction methods or technologies had been provided (Caruso 1990; Gualtieri 1991; Shoup 1990).

In 1991, JRP undertook the comparative study of rock walls integrated into mining canals on 13 other major hydraulic mining systems in the Sierra Nevada, concluding that segments of the canal’s flume bench foundation walls and abutments met National Register Criterion C for listing in the National Register. These included rock bench walls at Flume Nos. 8, 24, 25, 41, 45, and 48, plus the rock retaining walls in Alder Creek and Plum Creek canyons that were abandoned by the 1920s reconstruction and replaced by inverted siphons built across the mouth of these two canyons. The SHPO concurred with JRP’s findings in 1993. Subsequent study for Federal Energy Regulatory Commission Project 184 relicensing in 2008 by PAR Environmental Services confirmed these findings, also with SHPO concurrence (Glover et al. 1991; PAR 2008; Stratton 2008).
Lower Canal

Since 2006, four historic resource evaluations have addressed the eligibility of the lower portion of the El Dorado Canal below the El Dorado Powerhouse Forebay:

1. In 2006, Supernowicz prepared three brief paragraphs on an “update sheet” for two sites on the El Dorado Canal recorded in 2003 by Robert W. Allen, located approximately 1/2 and 1 mile below the Forebay. That one-paragraph history (without citation to any sources other than a single General Land Office Plat Map) states that the canal may have been constructed in the 1850s, or may be related to a ditch built on the upper South Fork of the American River around 1874 known as “Kirk’s new ditch,” shown on the aforementioned plat map. Supernowicz also field-checked the canal and concluded that it had been “improved numerous times and enlarged,” speculating that the enlargement may have been made in the 1920s “to accommodate larger flows of water.” After reciting the four eligibility criteria for the California Register, Supernowicz states that the canal appears significant under Criterion 1 for “its association with the historic development of a large water transport system to the western foothills of El Dorado County,” and under Criterion 3 “for its engineering design.” He does not elaborate further on these justifications for his eligibility assessment (Supernowicz 2006). There is no indication that the SHPO ever reviewed or concurred with this finding.

2. In 2012, Cardno Entrix prepared an evaluation of the El Dorado Main Canal for EID that addressed the National and California Register eligibility of a three-mile segment of the El Dorado Canal (aka, Main or Lower Canal) from the El Dorado Powerhouse Forebay to Reservoir No. 1 (Cardno Entrix 2012). This report concludes that the three-mile segment associated with the current project is not eligible for listing on the National or California Register under any of the significance criteria, and furthermore that it lacks integrity of setting, feeling, association, design, and workmanship. The evaluation calls out specifically the adverse impacts of “maintenance, residential construction, installation of bridges/walkways, and…other facilities associated with modern use of the canal” (Cardno Entrix 2012:4-3 to 4-7). It does not appear that this evaluation was ever submitted for SHPO review and concurrence.

3. In 2013, El Dorado County proposed a local assistance project with California Department of Transportation (Caltrans) to replace the Alder Drive Bridge over the EID Canal in the vicinity of Camino. Monte Kim of ICF International evaluated a 90-foot-long segment of the El Dorado Main Canal for this project, finding that it lacked significance and was therefore not eligible for the National or California Register. Specifically, Kim noted that the earthen canal segment lacked engineering distinction and had been substantially widened to twice its original width sometime in the 1910s or 1920s. In addition, its integrity of setting and feeling was compromised by state highway construction and modern residential developments (Mikesell 2013). The records search for the current project did not find any evidence of SHPO review or concurrence.

4. In 2017, JRP prepared a historic resources evaluation of the El Dorado Canal for Caltrans’ US Highway 50 Camino Safety Project (McMorris and Brooksheer 2017). This evaluation concluded that, although the mining canal constructed in the 1870s between the Kyburz and Placerville was an important early mining canal under Criteria A/1, it lacks integrity to that period of significance because of the canal reconstruction in the mid-1920s. When hydraulic mining faltered in the late 1880s its owners did not promote irrigation as an alternative use and it was not used extensively.
for that purpose until the late 1910s or 1920s, well after the pioneering era of irrigation development in California. Furthermore, McMorris and Brookshear argued that in the 1950s EID began a program to convert its open ditch system to pipelines, thereby abandoning long segments of the lower canal. The piping project had continued in more recent decades, leading to additional abandonment of long stretches of the historic canal alignment and a consequent loss of materials, design, workmanship, association, and setting. The California SHPO concurred with the finding of “not eligible for listing in the National Register of Historic Places” with respect to the El Dorado Canal in the vicinity of Camino (Polanco 2017).

The majority opinion of these earlier evaluations—whether or not they have received SHPO concurrence—is that the El Dorado Canal does not meet the eligibility requirements for either the National or the California Register. The current analysis agrees with that conclusion, based on the following considerations.

Criterion A/1

The Lower El Dorado Canal has two separate historical contexts, the first associated with the period of hydraulic mining for which it was constructed, and the second associated with irrigation and domestic water supply for which it has been used exclusively (but decreasingly) since the 1920s. When constructed in the 1870s to serve hydraulic mining, the entire canal—both upper and lower segments—was among the longest and most expensive feature of its kind in the region. As described earlier, however, the only part of the El Dorado Canal, upper or lower, that has integrity to the mining period is the rock bench walls on the upper portion. The water conveyance channel itself does not retain integrity to this period and is not eligible for the National or California Registers under Criterion A/1 within the context of hydraulic mining.

Once the practice of hydraulic mining was severely curtailed in 1884, the canal entered a period of underutilization until WSG&E bought it in 1916 for hydro-electric power development. The company used the upper canal above Forebay Dam (completed in 1923) for power production, and after the 1919 Railroad Commission ruling, the lower canal was increasingly used to supply downstream consumptive water users for domestic and irrigation purposes. Once the El Dorado Irrigation District formed in 1925 and took over the operation of the lower canal, the upper and lower segments were operated separately by two different owners until 1993.

The conversion of the lower canal to use by irrigators and municipalities is not historically significant under National or California Register Criteria A/1, in large part, because they were secondary uses of the canal. Historically significant irrigation canals in California are often those developed by mutual canal companies in the pioneering days of irrigated agriculture in the state—the last decades of the nineteenth century. The lower El Dorado Main Canal, a converted mining canal, does not have historic significance for its association with irrigation and municipal water supply that rises to the level of significance under these criteria. In addition, the lower canal lost substantial integrity to the period when it was converted to irrigation/municipal use in 1919. Once EID constructed Reservoir 1 and the water treatment plant circa 1955, the canal ceased to function in the way that as it had since 1919, because EID delivered the treated water in a system of distribution pipes below Reservoir 1, abandoning the canal as part of the municipal water delivery system. Today only two irrigators continue to draw water from the segment of the canal between Forebay Dam and Reservoir 1. The diminished use of the canal over the course of the twentieth and twenty-first centuries represents a substantial loss of integrity of association with the period of irrigation and domestic water supply. In addition, diminished use and abandonment have caused the canal to suffer substantial losses of integrity of design, materials, workmanship, and feeling to the period most closely associated with irrigation, 1919 to the construction of Reservoir 1 circa 1955. Segments of the canal have been piped, filled in,
and in some cases so undercut and scoured that the alignment has shifted, and in other places so glutted with sediment and vegetation that the earth ditch has nearly reverted to a natural state.

Criterion B/2

The El Dorado Canal is not significant under National or California Register Criteria B/2, because it is not directly associated with the lives of persons important to history. Kirk and Bishop developed the idea for the canal, and it represents their life’s work. However, as engineers their association with the canal falls correctly under National and California Register Criteria C/3. Construction, maintenance, and operation of such a large-scale canal relied upon the involvement of numerous individuals; however, outside of Kirk and Bishop, no single individual is clearly associated with the canal. Review of the history of the EDWC, El Dorado Water Corporation, and EID does not indicate that individuals associated with those organizations played significant roles in the further development of the El Dorado Main Canal or, through their association with the canal, played an important role in local, state, or national history that would merit significance under these criteria.

Criterion C/3

Under National and California Register Criteria C/3, the lower El Dorado Canal itself is not an important example of a type, period, or method of construction, because it lacks historic integrity. While previous evaluation has found that the dry-laid rock bench walls on the upper canal are significant under these criteria, no examples of that property type are present on the lower canal between Forebay Dam and Placerville. As discussed above, the lower canal has suffered substantial losses of integrity by abandonment and it cannot convey its engineering attributes present during its pioneering period of construction in the 1870s and following decades, nor its primary period of use for irrigation and municipal water, 1919 to circa 1955.

Criterion D/4

The lower El Dorado Canal is not significant under National and California Register Criteria D/4 as a source (or likely source) of important information on history or historical construction materials/technologies. Although the entire canal was a significant purveyor of water as an early and extensive mining canal of the 1870s, both the upper and lower canals lack historic integrity to that period and so do not convey this history. The lower canal is also associated with a period of irrigation and municipal water supply, 1919–circa 1955; however, the canal is not historically significant within that context, and it does not retain historic integrity to that period.

For the reasons just stated, we recommend that the lower El Dorado Main Canal is not eligible for listing on the National or California Registers under any criteria.
SUMMARY AND RECOMMENDATIONS

Archival research and fieldwork identified three historic-era resources in the project APE: the El Dorado Canal, Blair Road, and site P-09-3717H (Schuhmann Homestead/Loomer Property/Boy Scout Camp). JRP has evaluated all three resources and found that they are not eligible for listing on the National or California Registers; therefore, no further consideration of these resources is recommended for the current project.
REFERENCES

Adams, Frank

Bishop, F. A.

Bureau of Land Management (BLM)

Cardno Entrix
2012 *El Dorado Irrigation District Main Ditch-Forebay to RES 1 Project Cultural Resources Survey Report*.

Caruso, A. Glenn

Delgado, James P.

El Dorado County
1885 Grant Deed, George Rice et al to John Blair and James Blair, 14 January 1885, Book 30, Page 241, El Dorado County Recorder.
1886a Grant Deed, John Blair to Henry Schuhmann and Peter Roemer, 15 April 1886, Book 31, Page 501, El Dorado County Recorder.
1886b Quitclaim Deed, Peter Roemer to Henry Schuhmann, 27 December 1886, Book 32, Page 154, El Dorado County Recorder.

El Dorado Irrigation District (EID)

El Dorado Water and Deep Gravel Mining Company (EDW&DGM)
1873 EDW&DGM to F. A. Bishop, September 26, 1873, Lease A: 304, El Dorado County Recorder’s Office.
Elston, Robert G.

Elston, R. G., J. O. Davis, A. Leventhal, and C. Covington

Elston, R. G., S. Stornetta, D. Dugas, and P. Mires

Glover, Leslie C., Stephen R. Wee, and Rand F. Herbert

Gualtieri, Kathryn

Heizer, R. F., and A. B. Elsasser

1953 _Some Archaeological Sites and Cultures of the Central Sierra Nevada_. University of California Archaeological Survey Reports 12.

Hilscher, Ralph

Hutchins, Wells A.

Hyde, Charles Gilman

1913 California State Board of Health, 9-12. Record of the California State Board of Health, Bureau of Sanitary Engineering, MS 80/3, Water Resources Center Archives, Berkeley.

Jackson, R. J., T. L. Jackson, C. Miksicek, K. Roper, and D. Simons

JRP Historical Consulting Services, LLC

Jones & Stokes Associates

McGuire, K. R.

McMorris, Christopher, and Cheryl Brookshear

Michon and Associates

Mikesell, Stephen D.

2013 *Historic Resources Evaluation Report for the Alder Drive Bridge Replacement Project, California Department of Transportation District 3, El Dorado County, California.* ICF International. Prepared for California Department of Transportation.

Moehring, Eugene P.

2004 *Urbanism and Empire in the Far West, 1840–1890.* University of Nevada Press, Reno, Nevada.

Moratto, Michael J.

Mountain Democrat (Placerville)

1891 “Cedar Grove”; 11 April.

1892 “Cedar Grove”; 12 March.

1913 “Water Situation to Date”; May 17.

1928 “Delinquent Tax List – Property to be Sold at Public Auction”; 15 June.

1940 “Henry Schuhmann Taken by Death Tuesday Afternoon”; 2 May.
Oakland Tribune

1957 “Camp Loomer’s First Season Proves Highly Successful”; 4 August.

PAR Environmental Services, Inc.

Parker, Marilyn

Placerville Water Company (PWC)

1853 Articles of Incorporations, April 14, 1853. No. 7793, Records of the California Secretary of State, California State Archives, Sacramento.

Polanco, Julianne

Rodman, Paul

San Francisco Bay Area Council, Boy Scouts of America (SFBAC)

Shoup, Laurence

Sioli, Paolo

1883 Historical Souvenir of El Dorado County, California with Illustrations and Biographical Sketches of its Prominent Men & Pioneers. Paolo Sioli, Oakland, California.

Starns, Jean E.

State of California

1919a El Dorado County Water Users Association vs. Western States Gas and Electric Company. Case No. 1107 before the Railroad Commission of the State of California, Reporter’s Transcript.
State of California continued

Records of the California Public Utilities Commission, California State Archives, Sacramento, California.

1919c *Transcript of Hearings*, Application 4563 (October 1, 1919).
Records of the California Public Utilities Commission, California State Archives, Sacramento, California.

Stratton, Susan K. (for Milford Wayne Donaldson)

On file at EID, Placerville, California.

Supernowitz, Dana

1988 *Contextual History and Programmatic Agreement for Historic Water Conveyance Systems, Eldorado National Forest, California*.
Eldorado National Forest Supervisor’s Office, Placerville, California.

2006 El Dorado Irrigation District Main Canal.
September 2006, Update Form DPR Continuation Sheet, Primary #P-9-3718H.

US Bureau of Reclamation (Reclamation)

1960 *El Dorado Distribution System General Plan*.
El Dorado Irrigation District file.
El Dorado Historical Society, Placerville, California.

Waechter, Sharon A., Stephen Wee, and Meredith Rucks

2003 *Proposed Relicensing of the El Dorado Hydroelectric Project (FERC Project 184)*.
Far Western Anthropological Research Group, Inc., Davis, California.
Submitted to El Dorado Irrigation District, Placerville, California.

Wee, Stephen R.

2003 *Cultural Context: History*.
Far Western Anthropological Research Group, Inc., Davis, California.
Submitted to El Dorado Irrigation District, Placerville, California.

JRP Historical Consulting, LLC, Davis, California.
APPENDIX A

RECORDS SEARCH RESULTS

(CONFIDENTIAL)
Local Government Tribal Consultation List Request

Native American Heritage Commission
1550 Harbor Blvd, Suite 100
West Sacramento, CA 95691
916-373-3710
916-373-5471 – Fax
nahc@nahc.ca.gov

Type of List Requested

☒ CEQA Tribal Consultation List (AB 52) – Per Public Resources Code § 21080.3.1, subs. (b), (d), (e) and 21080.3.2
☐ General Plan (SB 18) - Per Government Code § 65352.3.

Local Action Type:

☐ General Plan ☐ General Plan Element ☐ General Plan Amendment
☐ Specific Plan ☐ Specific Plan Amendment ☐ Pre-planning Outreach Activity

Required Information

Project Title: Main Ditch – Forebay to Reservoir 1 Water Treatment Plant (RES 1) Project

Local Government/Lead Agency: El Dorado Irrigation District

Contact Person: Sharon Waechter

Street Address: 2727 Del Rio Place, Suite A

City: Davis Zip: 95618

Phone: 530.304.4110 Fax:

Email: SharonW@farwestern.com

Specific Area Subject to Proposed Action

County: El Dorado City/Community: Pollock Pines

Project Description: The El Dorado Irrigation District proposes to pipe a section of its Main Ditch between the Forebay and Gilman Lane. The purposes of the project are to reduce water leakage and loss in the ditch and to conserve District water supplies.

Additional Request

☒ Sacred Lands File Search - Required Information:

USGS Quadrangle Name(s): Pollock Pines 7.5’

Township: 11 North Range: 12 East Section(s): 25, 26, 35, 36
February 15, 2018

Sharon Waechter
Far Western

Sent by Email: sharonw@farwestern.com
Number of Pages: 2

RE: Forebay to Reservoir 1 Water Treatment Plant, Pollock Pines, El Dorado County

Dear Ms. Waechter:

A record search of the Native American Heritage Commission (NAHC) Sacred Lands File was completed for the area of potential project effect (APE) referenced above with negative results. Please note that the absence of specific site information in the Sacred Lands File does not indicate the absence of Native American cultural resources in any APE.

I suggest you contact all of those listed, if they cannot supply information, they might recommend others with specific knowledge. The list should provide a starting place to locate areas of potential adverse impact within the APE. By contacting all those on the list, your organization will be better able to respond to claims of failure to consult. If a response has not been received within two weeks of notification, the NAHC requests that you follow-up with a telephone call to ensure that the project information has been received.

If you receive notification of change of addresses and phone numbers from any of these individuals or groups, please notify me. With your assistance we are able to assure that our lists contain current information. If you have any questions or need additional information, please contact via email: Sharaya.souza@nahc.ca.gov.

Sincerely,

Sharaya Souza
Staff Services Analyst
(916) 573-0168
Native American Heritage Commission
Native American Contacts
2/13/2018

<table>
<thead>
<tr>
<th>Tribe Name</th>
<th>Contact Person</th>
<th>Phone Number 1</th>
<th>Phone Number 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colfax-Todds Valley Consolidated Tribe</td>
<td>Pamela Cubberley, Treasurer</td>
<td>(530) 320-3943</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCubberler@colfaxrancheria.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tsi Akim Maidu</td>
<td>(530) 274-7497</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grayson Conev. Cultural Director</td>
<td>(530) 320-3943</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lone Band of Miwok Indians</td>
<td>Crystal Martinez-Alire, Chairperson</td>
<td>(209) 245-5800</td>
<td>(209) 245-3112</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 699, Miwok</td>
<td>Office</td>
<td>Fax</td>
</tr>
<tr>
<td></td>
<td>Plymouth, CA 95669</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>crystal@ionemiwok.net</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(209) 245-5800 Office</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(209) 245-3112 Fax</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Randy Yonemura, Cultural Committee Chair</td>
<td>(209) 245-5800</td>
<td>(209) 245-6377</td>
</tr>
<tr>
<td></td>
<td>P.O. BOX 699, Miwok</td>
<td>Office</td>
<td>Fax</td>
</tr>
<tr>
<td></td>
<td>Plymouth, CA 95669</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>randy_yonemura@yahoo.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(209) 245-5800 Office</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(916) 601-4069 Cell</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(209) 245-6377 Fax</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Don Ryberg, Chairperson</td>
<td>(530) 559-8595</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.O. Box 510, Maidu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Browns Valley, CA 95918</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tsi-akim-maidu@att.net</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(530) 274-7497</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>United Auburn Indian Community of the Auburn Rancheria</td>
<td>(530) 883-2390 Office</td>
<td>(530) 883-2380 Fax</td>
</tr>
<tr>
<td></td>
<td>Gene Whitehouse, Chairperson</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10720 Indian Hill Road, Maidu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auburn, CA 95603, Miwok</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(530) 883-2390 Office</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(530) 883-2380 Fax</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washoe Tribe of Nevada and California</td>
<td>(775) 265-8600 x10714</td>
<td>(775) 546-3421 Cell</td>
</tr>
<tr>
<td></td>
<td>Darrel Cruz, Cult Res Dept. THPO</td>
<td>919 Highway 395 South</td>
<td>Washoe Gardnerville, NV 89410</td>
</tr>
<tr>
<td></td>
<td>valdezcome@comcast.net</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(916) 429-8047 Voice/Fax</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(916) 396-1173 Cell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shingle Springs Band of Miwok Indians</td>
<td>Nicholas Fonseca, Chairperson</td>
<td>(310) 387-1400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.O. Box 1340, Miwok</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shingle Springs, CA 95682, Maidu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nfonseca@ssband.org</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(530) 387-1400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This list is current only as of the date of this document and is based on the information available to the Commission on the date it was produced.

Distribution of this list does not relieve any person of statutory responsibility as defined in Section 7050.5 of the Health and Safety Code, Section 5097.94 of the Public Resource Section 5097.98 of the Public Resources Code.

This list is only applicable for contacting local Native American Tribes for the proposed: Forebay to Reservoir 1 Water Treatment Plant, Pollock Pines, El Dorado County.
APPENDIX C

SITE RECORDS
Resource Name or # (Assigned by recorder) Schuhmann Homestead / Loomer Property / Boy Scout Camp / Margaret Smith Property

*Continuation ☑ Update *

P1. Other Identifier: Schuhmann Homestead / Loomer Property / Boy Scout Camp / Margaret Smith Property

*P2 e. Other Locational Data: APN: 101-240-45-100
Township 11N, Range 12E, Section 25, MDBM; Blair Road, El Dorado County

P3a. Description: The primary change to the property since its last recordation in 2006 is substantial deterioration to the outbuilding southeast of the main house. See Figures 2 – 12 for photographs of current conditions.

P3b. Resource Attributes: (HP2 – Single family property; HP4 – Ancillary building; HP21 – Dam; HP20 – Canal / aqueduct)

P8. Recorded by: Heather Norby, JRP Historical Consulting, LLC, 2850 Spafford Street, Davis, CA 95618

B10. Significance:

This property was last recorded in September 2006 by Dana Supernowicz (see attached). He noted the deteriorated condition of the buildings on the property and found that the property did not meet any of the California Register of Historical Resources (CRHR) criteria for eligibility.

In order to prepare an evaluation applying National Register of Historic Places (NRHP) criteria, property-specific research was performed at the El Dorado County Historical Museum Archives, the El Dorado County Recorder, and in historic-period newspapers and maps. Errors in the 2006 documentation of the property history were found. The following presents additional information related to the property, and a significance evaluation using NRHP and CRHR criteria.

Historic Context

In the nineteenth century this 25.94-acre property was part of a 160-acre parcel located in the timberlands of El Dorado County between the Carson Valley Road and the South Fork of the American River, near Fyffe, the location of Sportsman’s Hall. The heirs of the original patentee, William Rice, sold the property to John and James Blair in January 1885. The Blairs had been operating sawmills in the area since 1860 and presumably logged the acreage before selling it in April of the following year to Henry Schuhmann and Peter Roemer. Roemer (perhaps Schuhmann’s brother) sold his interest in the property to Schuhmann later that year. Schuhmann, an immigrant from Germany, owned the 160-acre parcel until October 1911 when he sold all but a 2.58 parcel to the El Dorado Fruit Land Company. The 2.58-acre parcel he retained is north of Blair Road, and not part of the 25.94-acre parcel recorded on this form. During his 25-year ownership of the property, the local newspaper reported that Schuhmann planted 200 fruit trees (1891), and that the “Schuhmann brothers” set up a placer mine on their property (1892). An earthen dam on the property across a tributary of Long Canyon Creek and an associated ditch may have been developed as part of the placer mining operation, as well as a source of irrigation water. A segment of the El Dorado Main Canal passes through the property, and Schuhmann may have irrigated his crops with water deliveries from the canal. Today, the earth dam remains, with the associated ditch; however, the dam is severely breached with the natural stream flowing unfettered through it.

1 Grant Deed from Henry Schuhmann to El Dorado Fruit Land Company, 23 October 1911, Book 77, Page 448, El Dorado County Recorder.
It is not clear if Schuhmann ever lived at the property. He was a lifelong bachelor, and may have lived at Sportsman’s Hall, which was connected by Blair Road to his property approximately 1.5 miles away. If he did live on the property, it is almost certain that it was on the small 2.58-acre parcel he reserved when selling the acreage to the El Dorado Fruit Land Company in 1911. He retained that small parcel across Blair Road from the subject property until 1921.3 When he died in Placerville in 1940, his obituary noted that he had operated his ranch as an apple orchard for many years.4

By 1925, El Dorado County property ownership maps name the owner of the 160 acres (less the 2.58 acres) as “M.B. Doutt.” Research in local sources revealed very little information about M.B. Doutt and his wife Adele. Their property was listed for sale at public auction in 1928 as a result of delinquent taxes. On May 26, 1933 Arch and Laura Loomer of Sacramento bought the 157.42-acre property from E.K. Heller and Thomasina Heller. After 1934, the El Dorado County Recorder index shows many grant deeds from the Loomers to other individuals. They were almost certainly selling off subdivisions of the parcel.

Arch Loomer was a high school chemistry teacher in Sacramento from 1924 until his retirement in 1950. When he died in 1969, his obituary noted that he had resided in Sacramento for 46 years. Given that the Loomers’ activities did not receive press coverage in Placerville newspapers, nor did research in the local El Dorado County archives produce information about them, it can be inferred that they developed this property as a summer retreat during Arch’s summers off from teaching. The assessor’s effective date for buildings on the property is 1935, and Gary Gould, per interview with Supernowicz in 2006, stated that he believed the Loomer family had built the rustic three-story log house on the property while living in one of the smaller buildings.5 A 1956 recorded agreement document between the Loomers and the Boys Scouts of America (BSA), Oakland Area Council bears this out.6 That year, the Loomers sold the now 50-acre parcel including all of the buildings to the Boys Scouts of America, Oakland Area Council. The agreement document recorded along with the Gift Deed specifies that the grantees (the Loomers) will retain the right to use the “Loomer Cabin.” The agreement also provided that the grantees permit “persons who have cabins on said real property continue to have the right to use said cabins” and goes on to specify that Ollie Wilson will retain the right to use the cabin commonly known as the “Wilson Cabin” and Ralph Kendall will retain the right to use the cabin known as the “Kendall Cabin.” The 1940 census lists a Ralph Kendall who was a teacher living in Sacramento, and an Ollie Wilson who was a merchant living in Sacramento. A retrospective about Camp Loomer published online by the Boys Scouts, San Francisco Bay Area Council, noted that Wilson and Kendall were both teachers. It appears that the Loomers allowed their friends Kendall and Wilson to build small summer cabins (for Cabin #1 and Cabin #2 see Figures 3 and 4) on their property. These cabins were built sometime between the Loomers purchasing the property in 1933, and the sale in 1956, likely closer to 1933. The smaller building that the Loomers lived in during construction of the log house was probably the building shown in Figure 8. It was either a hastily erected structure built by the Loomers while they took their time building the log house, or it was a barn left over from the Schuhmann period of occupancy.7

3 Grant Deed from Henry Schuhmann to Hans Jochim, 1 March 1921, Book 93, Page 185, El Dorado County Recorder.
4 “Map Showing Irrigated and Irrigable Lands Near Placerville, El Dorado County, California, 1919,” data compiled by T.G. Patton and H. Lahiff, N.B. Ellery, engineer; US Federal Census, 1900, 1910; “Henry Schuhmann Taken by Death Tuesday Afternoon,” Mountain Democrat (Placerville) 2 May 1940;
5 Gary Gould is the forester for the current property owner.
6 “Official Map of the County of El Dorado, California, 1925,” compiled from official records and surveys by Clifton H. Wildman, Civil Engineer, Placerville; “Delinquent Tax List – Property to be Sold at Public Auction,” Mountain Democrat (Placerville) 15 June 1928; “Recorder’s Filings,” Mountain Democrat 29 June 1934. Additional research in El Dorado County Recorder and Assessor records may assist in unraveling the construction sequence of the buildings and provide documentation to properly attribute the builders and eras of construction.
7 Agreement between Arch S. Loomer and Laura C. Loomer, Grantors, and Oakland Area Council of Boy Scouts of America, 20 September 1956, Book 390, Page 339, El Dorado County Recorder; Gift Deed from Arch S. Loomer and Laura C. Loomer to Oakland Area Council of Boy Scouts of America, 20 September 1956, Book 390, Page 342, El Dorado County Recorder; San Francisco Bay Area DPR 523L (1/95) *Required Information
A newspaper article in 1957 covering the new BSA acquisition of “Camp Loomer” stated that “this camp is in an almost wild state and will be preserved in its natural beauty with as little buildings as possible, just enough for sanitation and safety.”

See Figure 1 below for a sketch of the property during the Boys Scout’s occupancy. BSA did not add any permanent structures to the property. By the 1970s, the San Francisco Bay Boy Scouts Council had a half-dozen other rustic camps in the Sierra and elsewhere in Northern California. Declining use of Camp Loomer combined with high maintenance costs and encroachment of residential development, led the council to its decision to close the boy scout camp. In 1975, the Boys Scouts sold the property to Margaret C. Smith who owned it until 1998. According to a personal interview by the author with Gary Gould, the property owner’s forester, Smith built the open carport north of the main house during her tenure on the property. The current owners bought the property in 1998.

Figure 1: Sketch of Camp Loomer. The camp operated as a Boys Scout camp from 1957 – 1973.

8 “Camp Loomer’s First Season Proves Highly Successful” *Oakland Tribune*, 4 August 1957.

9 Grant Deed from San Francisco Bay Area Council, Boy Scouts of America to Margaret C. Smith, 22 July 1975, Book 1338, Page 694, El Dorado County Recorder.

Evaluation

The built environment on this property consists of a collection of buildings constructed between 1933 and 1956, a carport built after 1975, and an earthen dam and ditch that may date to the 1890s. The heavily dilapidated building shown in Figure 8 may be a barn dating to the Schuhmann period of occupancy, or a hastily erected shelter where the Loomers lived while building their log house. A segment of El Dorado Main Canal is also present on this property. For an evaluation of that canal, please see the DPR 523 form for El Dorado Main Canal.

The earthen dam and short segment of ditch on the property may be associated with placer mining that the local newspaper noted the “Schuhmann brothers” tried on their property in 1892. There is no further mention of a mining operation on their property after that point. After trying their hand at placer mining, it is probable that Henry Schuhmann used the dam to impound irrigation water. The dam is a simple earth embankment that has been severely breached and has an associated earthen ditch. These structures are not historically significant under NRHP Criterion A or CRHR Criterion 1 within the context of placer mining in El Dorado County, an endeavor that had a 40-year history by the 1890s and was widely practiced by property owners trying their luck at extracting more gold from the hills long after the peak period of gold mining the Mother Lode. The dilapidated building in Figure 8 may have been built by Schuhmann during the period when he farmed an orchard on the property. The building is not historically significant for this possible association because there is no evidence that Schuhmann’s orcharding activities were anything other than typical. This partially collapsed structure does not convey anything historically significant about the development or use of this property, or about the development of the Pollock Pines area.

The collection of buildings constructed by Arch and Laura Loomer, and their friends Ralph Kendall and Ollie Wilson are not historically significant under NRHP Criterion A or NRHP Criterion 1 because they are not associated with any events that have made a significant contribution to any pattern of local, state, or national history. The Loomers and their friends, all school teachers, constructed these buildings between 1933 and 1956 as a summer retreat from the Sacramento Valley. There is no evidence that these buildings had any significance to the development of the Pollock Pines area. The carport built by Margaret C. Smith is less than 50 years old and is a simple utilitarian structure that does not have any historical significance under these criteria. During the approximately 20-year period when the Boy Scouts used the property, they did not construct any permanent buildings on the property, and they did not use the existing buildings. There is no built environment present on the property that is associated with that period of use.

None of these buildings are significant under NRHP Criterion B or CRHR Criterion 2 because none of the individuals directly associated with their construction or use are persons who made demonstrably important contributions to our history. Henry Schuhmann, who is associated with the earth embankment dam and short earthen ditch, was a typical farmer in El Dorado County and there is no evidence that he made any demonstrable or specific contributions to history. Arch and Laura Loomer who are responsible for almost all of the built environment on the property appear to have been typical members of the Sacramento community who did not make any specific contributions to history that merit significance under these criteria. The same is true for Ralph Kendall and Ollie Wilson; nothing rises in the historical record to suggest that either of these men made historically significant contributions to any facet of our history. Further, if it were determined that any of these individuals had in fact made an important historical contribution, their summer homes would not be a good representation of their significance.

None of the structures on this property meet NRHP Criterion C or CRHR Criterion 3 individually, or as contributors to an historic district. The Loomer log cabin and the small Kendall and Wilson cabins reflect a Rustic style of architecture, commonly used by the National Park Service from the 1910s into the 1940s for buildings in the national parks, and popular among private owners of residential properties in mountainous regions. This style of architecture was a natural outgrowth of the romanticism in the late nineteenth and early twentieth centuries that consciously embraced wilderness and nature, placing positive value on experiencing and protecting the natural environment. An increasing number of Americans were living in urban environments at the time, and many in the country responded by investing wooded and mountainous places
with aesthetic, ethical, and spiritual values. The changing attitude about the country’s former western frontier is exhibited in the early twentieth century conservation ethic and influenced architectural style in rugged and remote places.11

The Rustic style also draws from the earlier twentieth-century Arts and Crafts movement that emphasized the use of natural materials and architectural design that complements the natural environment. Design and construction of buildings that intentionally employed indigenous materials such as timber logs, bark siding, stone, and crafted wood ornamentation represents cultural values about nature, a reflects the desire for an appropriate architectural design to visually harmonize with what was considered a wilderness setting. This follows the picturesque landscape ideals that were popular in the late nineteenth century, where buildings were designed to respond to their sites. Rusticity provided a vernacular hand-crafted appearance to highlight a pleasant contrast to cities and urban living. The wooded or natural surroundings and rustic buildings provided escape from the urban landscape and the fashionable, and arguably more sophisticated or modern styles of the period, such as Classical Revival or Moderne.12 It was also practical to use locally available natural materials, considering the difficulty and cost of importing building materials to remote locations. Rustic style buildings were built using traditional building forms, with gable, moderately to steeply pitched roofs, simple floor plans and porches, and the use of roughly prepared timber and stone materials. Buildings emphasizing this concept of non-intrusive architecture included cabins, cottages, summer homes, hotels, and public / institutional buildings. Many examples of privately owned Rustic buildings were both designed and built by the owners, which appears to be the case for the buildings on this property.

These buildings were built following the basic tenets of the Rustic style favored in mountainous areas, like the Sierra Nevada, in the early to mid-twentieth century, and do not individually or collectively express that ideal to a degree that is historically significant. The Kendall and Wilson cabins are very small wood-frame expressions of the style built according to exceedingly common methods and materials. The Loomer cabin is larger and more aesthetically interesting with its log construction and mortared stone foundation; however, beyond the choice of building materials there is little other articulation of the style. In addition, it has suffered loss of integrity from prolonged neglect, and from an addition using incompatible materials on the east side (Figure 6).

The earthen embankment dam and short ditch segment do not meet NRHP Criterion C or CRHR Criterion 3 because they are very commonly employed earthen structures built for impounding and conveying water, and because the dam has lost integrity to the point that it no longer functions as a dam; water flows unfettered through a large breach in the embankment.

None of the buildings or structures on this property have significance under NRHP Criterion D or CRHR Criterion 4 because they were built according to typical methods and means of the time that are well-documented in the historic literature.

*B14. Evaluator: Heather Norby, JRP Historical Consulting, LLC *Date of Evaluation: May 2018

DPR 523L (1/95) *Required Information
Photographs:

Figure 2: Entrance to the property, cabin #1 at left. Camera facing south, February 1, 2018.

Figure 3: Cabin #1, built between 1933 and 1956 by Ralph Kendall or Ollie Wilson. Camera facing northwest, February 1, 2018.
<table>
<thead>
<tr>
<th>State of California – The Resources Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPARTMENT OF PARKS AND RECREATION</td>
</tr>
<tr>
<td>UPDATE SHEET</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resource Name or # (Assigned by recorder)</th>
<th>Schuhmann Homestead / Loomer Property / Boy Scout Camp / Margaret Smith Property</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Primary #</th>
<th>P-9-3717-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRI #</td>
<td></td>
</tr>
<tr>
<td>Trinomial</td>
<td></td>
</tr>
<tr>
<td>NRHP Status Code</td>
<td>6Z.</td>
</tr>
</tbody>
</table>

- **Figure 4:** Cabin #2, built between 1933 and 1956 by Ralph Kendall or Ollie Wilson. Camera facing northwest, February 1, 2018.

- **Figure 5:** Loomer cabin constructed circa 1935. Camera facing northeast, February 1, 2018.
Figure 6: East side of Loomer cabin showing addition with two types of faux stone façade. Camera facing southwest, February 1, 2018.

Figure 7: Dilapidated cookhouse. Camera facing northwest, February 1, 2018.
Figure 8: Barn, likely associated with the Schuhmann period of occupancy, 1886-circa 1925. Camera facing southeast, February 1, 2018.

Figure 9: Collapsed animal shelter southeast of main house. Likely associated with the Schuhmann period of occupancy, 1886 – circa 1925. Camera facing northeast, February 1, 2018.
Figure 10: Ditch associated with earth dam. Likely dates to Schuhmann’s period of occupation, 1886 – circa 1925. Camera facing east, February 1, 2018.

Figure 11: Earth dam south of buildings. Likely associated with Schuhmann’s period of occupation, 1886-circa 1925. Camera facing south, February 1, 2018.
Figure 12: Carport constructed during Margaret Smith’s period of ownership, 1976-1998. Camera facing south, February 1, 2018.

Figure 13: Water tank, February 1, 2018.
Blair Road is an asphalt-paved, two-lane road, where each lane is approximately 10 feet wide with no shoulder and generally runs northeasterly/southwesterly for approximately 2.2 miles with several wide curves (Photograph 1). This form records six points along the road between Pony Express Trail to the south and Forebay Road to the north. For a short segment, the road passes through a rural, wooded residential area with some houses accessed by driveways directly from the road, and others accessed by residential cross streets. The majority of the road passes through wooded non-residential lands. The only part of the road that has a shoulder is where it crosses the El Dorado Main Canal at modern Blair Road Bridge, about one half-mile north of the southern edge of the road.

See Linear Feature Record for recorded road segments.

*P3b. Resource Attributes: (List attributes and codes) HP37—Highway/trail

*P4. Resources Present: ☐ Building ☐ Structure ☐ Object ☐ Site ☐ District ☐ Element of District ☐ Other (Isolates, etc.)

P5b. Description of Photo: (View, date, accession#) Photograph 1: Segment at Blair Road Bridge, facing northeast, December 21, 2017.

*P6. Date Constructed/Age and Sources: ☑ Historic ☐ Prehistoric ☐ Both 1860; 1880; 1964 (Survey Plat; Parker; Mountain Democrat)

*P7. Owner and Address: Privately owned among by abutting property owners; maintained by El Dorado County 2441 Headington Road Placerville, CA 95667

*P8. Recorded by: (Name, affiliation, address) Heather Norby and Shelby Kendrick JRP Historical Consulting, LLC 2850 Spafford Street Davis, CA 95618

*P9. Date Recorded: December 21, 2017

*P10. Survey Type: (Describe) Intensive

*Attachments: ☐ None ☐ Location Map ☐ Sketch Map ☐ Continuation Sheet ☐ Building, Structure, and Object Record ☐ Archaeological Record ☐ District Record ☐ Linear Feature Record ☐ Milling Station Record ☐ Rock Art Record ☐ Artifact Record ☐ Photograph Record ☐ Other (list)

DPR 523A (1/95)
B.1. Historic Name: Blair Road
B.2. Common Name: Blair Road

*B.5. Architectural Style: utilitarian

*B.6. Construction History: Lower segment developed as a dirt track in 1860; remainder of road developed in its general current location by 1880; refinements made to alignment sometime between 1931 and 1950; paved in 1964; Blair Road Bridge over El Dorado Main Canal replaced and shoulders added to Blair Road at each end of the bridge in 2017.

*B.7. Moved? □ No □ Yes □ Unknown Date: ______________ Original Location: ______________

*B.10. Significance: Theme: n/a Area: El Dorado County

Period of Significance: n/a Property Type: Road Applicable Criteria: n/a

(Discuss importance in terms of historical or architectural context as defined by theme, period, and geographic scope. Also address integrity.)

Blair Road is not eligible for listing in the National Register of Historic Places (NRHP) or the California Register of Historical Resources (CRHR) because it does not have integrity to its early period of development and use, 1860 - 1925. It is not an historic property under Section 106 of the National Historic Preservation Act nor is it an historical resource for the purposes of the California Environmental Quality Act (CEQA). This property has been evaluated in accordance with Section 106 of the National Historic Preservation Act of 1966 (as amended) (54 U.S.C. 306108) and its implementing regulations (36 CFR Part 800), and Section 15064.5(a)(2)-(3) of the CEQA Guidelines, using the criteria outlined in Section 5024.1 of the California Public Resources Code (see Continuation Sheet).

B.11. Additional Resource Attributes: (List attributes and codes) ____________

B.13. Remarks:

*B.14. Evaluator: Heather Norby

*Date of Evaluation: February 2018

(This space reserved for official comments.)
L1. Historic and/or Common Name: Blair Road
L2a. Portion Described: □ Entire Resource □ Segment ☑ Point Observation Designation: BR-1
L2b. Location of point or segment: (Provide UTM coordinates, legal description, and any other useful locational data. Show the area that has been field inspected on a Location Map.) This point is located on the northern end of Blair Road, approximately 200 feet south of Forebay Road. The point is located in a wooded area just north of a small residential area. UTM: Zone 10, NAD 83, 709513mE/4294060mN
L3. Description: (Describe construction details, materials, and artifacts found at this segment/point. Provide plans/sections as appropriate.)
This point on Blair Road has a metal pipe culvert that passes beneath the road. The road is paved with asphalt and has two lanes that are approximately ten feet wide each with no shoulder. There is a paved turnout where Blair Road curves to the west from Forebay Road (Photographs 2, 8, and 9).

L4. Dimensions: (in feet for historic features and meters for prehistoric features)
 a. Top Width: 20 feet (approx.)
 b. Bottom Width: n/a
 c. Height or Depth: n/a
 d. Length of Segment: n/a

L5. Associated Resources: None

L6. Setting: (Describe natural features, landscape characteristics, slope, etc., as appropriate.)
The road is located in a rural area of El Dorado County and is surrounded by wooded areas, and large residential parcels.

L7. Integrity Considerations: This point on the road has integrity to the year that it was first paved, 1964. It does not have integrity of design, materials, or workmanship to any earlier period when it as a dirt track through a remote area.

L8a. Photograph, Map, or Drawing.

L8b. Description of Photo, Map, or Drawing: Photograph 2: Culvert on the west side of Blair Road near the Forebay, facing north, December 21, 2017.

L9. Remarks:

L10. Form prepared by:
Heather Norby and Shelby Kendrick
JRP Historical Consulting, LLC
2850 Spafford Street
Davis, CA 95618

L11. Date: December 21, 2017

L4e. Sketch of Cross-Section (not to scale) Facing:
 n/a
L1. Historic and/or Common Name: Blair Road

L2b. Location of point or segment: (Provide UTM coordinates, legal description, and any other useful locational data. Show the area that has been field inspected on a Location Map.) This point is located approximately 0.25 miles east of the intersection of Blair Road and Old Blair Mill Road. At this point, Blair Road intersects the south fork of Long Canyon Creek.
UTM: Zone 10, NAD 83, 708753mE/4293583mN

L3. Description: (Describe construction details, materials, and artifacts found at this segment/point. Provide plans/sections as appropriate.)
This point on Blair Road intersects the south fork of Long Canyon Creek with a corrugated metal culvert passing beneath the road. The road is paved with asphalt and has two lanes that are approximately ten feet wide each (Photograph 3).

L4. Dimensions: (in feet for historic features and meters for prehistoric features)
 a. Top Width: 20 feet (approx.)
 b. Bottom Width: n/a
 c. Height or Depth: n/a
 d. Length of Segment: n/a

L5. Associated Resources: None

L6. Setting: (Describe natural features, landscape characteristics, slope, etc., as appropriate.)
The road is located in a rural area of El Dorado County and is surrounded by wooded areas, large lot residential and agricultural uses.

L7. Integrity Considerations: This point on the road has integrity to the year that it was first paved, 1964. It does not have integrity of design, materials, or workmanship to any earlier period when it as a dirt track through a remote area.

L8a. Photograph, Map, or Drawing.

L8b. Description of Photo, Map, or Drawing:
Photograph 3 East side culvert through Blair Road, camera facing northeast, December 21, 2017.

L9. Remarks:

L10. Form prepared by:
Heather Norby and Shelby Kendrick
JRP Historical Consulting, LLC
2850 Spafford Street
Davis, CA. 95618

L11. Date: December 21, 2017
Resource Name or # (Assigned)

Date: December 21, 2017

L1. Historic and/or Common Name: Blair Road

L2a. Portion Described: Entire Resource Segment Point Observation **Designation:** BR-3

b. Location of point or segment: (Provide UTM coordinates, legal description, and any other useful locational data. Show the area that has been field inspected on a Location Map.) This point is located at fork of Blair Road and Old Blair Mill Road, approximately 1.25 miles north of the southern boundary of Blair Road where it meets Pony Express Trail.

UTM: Zone 10, NAD 83, 708423mE/4293562mN

L3. Description: (Describe construction details, materials, and artifacts found at this segment/point. Provide plans/sections as appropriate.)

This point is at the fork in the road where Old Blair Mill Road diverges from Blair Road. Old Blair Mill Road forks off of Blair Road in a northwesterly direction. A sign at the fork states that Old Blair Mill Road is not a through road. West of the fork is a long, dirt driveway that leads to a residence approximately 220 feet northwest from the intersection. Blair Road is paved with asphalt and has two lanes that are approximately ten feet wide each (Photographs 4, 10, and 11).

L4. Dimensions: (in feet for historic features and meters for prehistoric features)

a. Top Width	20 feet (approx.)
b. Bottom Width	n/a
c. Height or Depth	n/a
d. Length of Segment	n/a

L5. Associated Resources: Old Blair Mill Road

L6. Setting: (Describe natural features, landscape characteristics, slope, etc., as appropriate.)

The road is located in a rural area of El Dorado County and is surrounded by wooded areas, large lot residential and agricultural uses.

L7. Integrity Considerations: This point on the road has integrity to the year that it was first paved, 1964. It does not have integrity of design, materials, or workmanship to any earlier period when it as a dirt track through a remote area.

L8a. Photograph, Map, or Drawing:

L8b. Description of Photo, Map, or Drawing:

Photograph 4: Fork of Blair Road and Old Blair Mill Road; Old Blair Mill Road at left, Blair Road at right, camera facing north, December 21, 2017.

L9. Remarks:

L10. Form prepared by:
Heather Norby and Shelby Kendrick
JRP Historical Consulting, LLC
2850 Spafford Street
Davis, CA 95618

L11. Date: December 21, 2017
Resource Name or # *(Assigned by)*
Date: December 21, 2017

L1. Historic and/or Common Name: Blair Road

L2a. Portion Described: ☑ Entire Resource ☐ Segment ☐ Point Observation
Designation: BR-4

L2b. Location of point or segment: (Provide UTM coordinates, legal description, and any other useful locational data. Show the area that has been field inspected on a Location Map.)
This point located at the T-intersection of Blair Road and Badger Hill Road. It is approximately 0.44 miles south of the intersection of Blair Road and Old Blair Mill Road
UTM: Zone 10, NAD 83, 708454mE/4292891mN

L3. Description: (Describe construction details, materials, and artifacts found at this segment/point. Provide plans/sections as appropriate.)
This point is the T-intersection where Badger Hill Road turns off of Blair Road (Photograph 5). At this location, Blair Road runs generally north and south, and Badger Hill Road meets Blair Road at a perpendicular angle on the east side. Blair Road is paved with asphalt and has two lanes that are approximately ten feet wide each (Photograph 12).

L4. Dimensions: (in feet for historic features and meters for prehistoric features)
- a. **Top Width:** 20 feet (approx.)
- b. **Bottom Width:** n/a
- c. **Height or Depth:** n/a
- d. **Length of Segment:** n/a

L5. Associated Resources: None

L6. Setting: (Describe natural features, landscape characteristics, slope, etc., as appropriate.)
To the north of the intersection of Blair Road and Badger Hill Road is a large agricultural property, currently operating as a tree farm. To the east of Blair Road is a small deforested area, with the remaining surroundings consisting of wooded areas.

L7. Integrity Considerations: This point on the road has integrity to the year that it was first paved, 1964. It does not have integrity of design, materials, or workmanship to any earlier period when it as a dirt track through a remote area.

L8b. Description of Photo, Map, or Drawing:
Photograph 5: Blair Road and Badger Hill Road intersection, facing north, December 21, 2017.

L9. Remarks:

L10. Form prepared by:
Heather Norby and Shelby Kendrick
JRP Historical Consulting, LLC
2850 Spafford Street
Davis, CA 95618

L11. Date: December 21, 2017
L1. Historic and/or Common Name: Blair Road

L2b. Location of point or segment: (Provide UTM coordinates, legal description, and any other useful locational data. Show the area that has been field inspected on a Location Map.) This point is located at Blair Road Bridge, where Blair Road passes over the El Dorado Main Canal. It is approximately one-half mile north of the southern end of Blair Road where it meets Pony Express Trail.

UTM: Zone 10, NAD 83, 708258mE/4292655mN

L3. Description: (Describe construction details, materials, and artifacts found at this segment/point. Provide plans/sections as appropriate.) Blair Road Bridge, constructed in 2017, is the only portion of Blair Road that has a shoulder on either side of the road. The shoulder is approximately five feet wide on the north side and approximately two feet wide on the south side, and each of the two lanes are ten feet wide. The north side of the bridge has a short concrete headwall with a culvert for the El Dorado Main Canal to pass beneath the bridge. An approximately 6-foot-tall chain-link fence is anchored to the top of the concrete headwall. The south side of the bridge has a metal guardrail in front of a concrete curb that holds a rope fence (Photographs 6 and 13).

L4. Dimensions: (in feet for historic features and meters for prehistoric features)
 a. Top Width: 27 feet (approx.)
 b. Bottom Width: n/a
 c. Height or Depth: n/a
 d. Length of Segment: n/a

L5. Associated Resources: None

L6. Setting: (Describe natural features, landscape character, ...)
The road is located in a rural area of El Dorado County and is surrounded by wooded areas, large lot residential and agricultural uses. The south end of the bridge overlooks a steeply sloped wooded area.

L8a. Photograph, Map, or Drawing.

L8b. Description of Photo, Map, or Drawing:

L8c. Sketch of Cross-Section (not to scale) Facing:

L7. Integrity Considerations: This point has lost integrity of design, materials, workmanship, and feeling to the 1964, the period when Blair Road was first paved, because of the bridge reconstruction project completed in 2017.

L8b. Description of Photo, Map, or Drawing:

Photograph 6: Blair Road Bridge, facing east, December, 21, 2017.

L9. Remarks:

L10. Form prepared by:
Heather Norby and Shelby Kendrick
JRP Historical Consulting, LLC
2850 Spafford Street
Davis, CA 95618

L11. Date: December 21, 2017
Historic and/or Common Name: Blair Road
Portion Described: Entire Resource
Designation: BR-6
Location of point or segment: This point is located at 2840 Blair Road, just south of Patrick Lane and approximately 0.25 miles north of the southern end of Blair Road where it meets Pony Express Trail.
UTM: Zone 10, NAD 83, 708030mE/4292492mN
Description: This point on Blair Road passes through a wooded, small residential area. The residences are primarily one or two stories tall with long, paved driveways. The road has two lanes, each approximately 10 feet wide, and is paved with asphalt (Photographs 7 and 14).
Dimensions:
- **Top Width:** 20 feet (approx.)
- **Bottom Width:** n/a
- **Height or Depth:** n/a
- **Length of Segment:** n/a
Setting: The road is located in a rural area of El Dorado County and is surrounded by wooded areas, large lot residential and agricultural uses.
Integrity Considerations: This point on the road has integrity to the year that it was first paved, 1964. It does not have integrity of design, materials, or workmanship to any earlier period when it was a dirt track through a remote area.
Description of Photo, Map, or Drawing:
Photograph 7: Segment near 2840 Blair Road, facing south, December 21, 2017.
B10. Significance (continued):

Historic Context

During the late nineteenth century, Blair Road was a dirt track that forked off from the Carson-Tahoe Road just east of Sportsman’s Hall at Fyffe and led to sawmills owned by the Blair Brothers. Four Blair brothers, John, James, Matthew, and Robert immigrated from Scotland to Ohio around 1850. News of the gold discovery in California drew John Blair to the West where he settled in El Dorado County. By the time his brother James joined him, John had acquired timber land 11 miles east of Placerville, and purchased 160 acres adjacent to Carson Valley Road that included Sportsman’s Hall. Sportsman’s Hall, located at Fyffe on nineteenth-century maps, was an important waystation for travelers passing through the area. After Robert came west and joined them in the hotel business, the brothers began to diversify their interests and started up in the lumbering business where mining operations and quickly blossoming mining towns created a great demand for lumber.1

The Blairs established their first sawmill, a steam-powered mill, near Five Mile House in 1856. Their second mill, Elkhorn Mill, established in 1860, created the need for the first leg of Blair Road. To get to Elkhorn Mill from Sportsman’s Hall, a traveler would head northeasterly on Carson Valley Road for approximately 0.4 miles where a branch road – likely the earliest leg of Blair Road – headed off to the northeast for approximately 0.25 more miles to the mill site (Figure 1). When the surveyor filed the map of Township 11N, Range 12E2 in 1874, Elkhorn Mill and the short segment of Blair Road were still present, and other roads, perhaps also early iterations of Blair Road, crisscrossed the section lines between Section 25, 26, and 36.3

The Blairs’ lumbering practice was to operate a sawmill for about 10 years close to the timber stands they were harvesting, and then move their milling operations to a new location, closer to the fresh harvest. From the 1870s through at least the 1890s, the Blairs had two different mill sites in Long Canyon, north of the Elkhorn Mill. It was not until 1913 that they established a mill at the end of the road currently known as “Old Blair Mill Road” that forks off from Blair Road (see Linear Feature Record “BR-3” above for a description of the fork off of Blair Road to Old Blair Mill Road). They operated that last mill in Long Canyon until 1925.4

The segment of Blair Road above the Elkhorn Mill site may have been established in the 1870s by the Blairs scouting timber lands, but it was certainly in place by around 1880 when the Blairs moved their sawmill operation to the northeasterly corner of Section 26. Mapping from the early 1890s through at least the 1930s shows a static alignment of a road from the original point where it branched off from Carson Valley Road toward Elkhorn Mill, and then meandering in a generally northerly direction toward the Blair Mill Site in North Long Canyon. The alignment during this period may not have followed the current alignment exactly – mapping from the 1890s does not depict the junction of today’s Blair Road and Forebay Road as far to the east as it is today – however, it generally follows the current alignment (Figure 2). By the late nineteenth-century, the road also provided access to a few scattered fruit orchards adjacent to Blair Road. For example, in 1891 Henry Schuhmann planted 200 fruit trees on his property that was bisected by Blair Road (Figure 3).5

2 Blair Road is located in Sections 25, 26, and 35 of Township 11N, Range 12E, MDBM.

3 Bureau of Land Management, General Land Office, Survey Plat Map, El Dorado County, Township 11N, Range 12E, MDBM.

4 Marilyn Parker, The Pollock Pines Epic, chapter 8.

By 1950, a few buildings, presumably residences, were present along Blair Road, with the highest concentration in the lower stretch closest to Highway 50 and Sportsman’s Hall. Most of the road remained unpaved until 1964 when El Dorado County paved the 1.7-mile stretch between the bridge over the El Dorado Main Canal and Forebay Road. Residents were unhappy with the county’s paving job, claiming that shortly after it was completed there were already large cracks in the paving, purported evidence that no rock base course had been used and that asphalt had been lain over uncompacted soil. The county’s rejoinder was that they had done the job within the confines of the available budget. By 1976 a few more residences were constructed along the lower stretch of the Blair Road (Figure 4). Today, the road has modern pavement and striping, and in 2017 El Dorado County replaced the Blair Road Bridge over El Dorado Main Canal, and created shoulders at each end of the bridge.

Figure 1: Excerpt of 1874 survey plat of Township 11N, Range 12E, MDBM. Red arrow indicates first leg of Blair road branching off from Carson Valley Road to Elkhorn Sawmill.

El Dorado, California, 1925,” compiled from official records and surveys by Clifton H. Wildman, Civil Engineer, Placerville; “Cedar Grove,” Mountain Democrat, 11 April 1891.

DPR 523L (1/95)

*Required Information
Figure 2: Excerpt of 1891 USGS “Placerville” topographic map. Blair Road connected Sportsman’s Hall, located at Fyffe, to the Blair Saw Mill (location depicted on the map) that operated from about 1880 into the early twentieth century.

Figure 3: Excerpt of a 1908 El Dorado County map showing (with red arrow) the alignment of Blair Road between Carson Valley Road and one of the Blair Sawmills.
Evaluation

Blair Road follows the general alignment of a nineteenth-century road developed by early settlers to El Dorado County, John, James, Matthew, and Robert Blair. The first short segment was developed by 1860 to provide access to Elkhorn Mill, the second sawmill established by the Blair brothers, and the remainder of the road’s alignment was generally in place no later than 1880. Its primary use during the nineteenth century was for access from Carson Valley Road to timberlands, and a few farming operations. During the twentieth century, the road provided access to new residences, and in 1964, it was finally paved. The road is associated with the Blair brothers’ various milling operations throughout this part of El Dorado County between 1860 and 1925. The Blairs’ development of El Dorado County around Pollock Pines is a significant part of the early history of the county and Blair Road is associated with that significance under NRHP Criterion A and CRHR Criterion 1 at the local level. Blair Road does not, however, retain integrity to the period closely associated with the Blair Sawmills, 1860 – 1925, and is therefore not eligible for listing in either register. It has lost integrity of design, materials, and workmanship to this period because it is no longer a crude dirt road, but rather a modern 20-foot-wide road with asphalt paving, modern striping, and a modern bridge. Its integrity of location may have also suffered by refinement of the alignment during the twentieth century. In addition to those losses of integrity, it has also lost integrity of setting and

*Required Information
association because Blair Road no longer passes by, or leads to any Blair sawmills. And finally, feeling, the most subjective of integrity considerations, has been substantially lost because this modern road bears no resemblance to the dirt track used during the period of association with the Blair sawmills.

Similarly, while Blair Road has associations with the four Blair brothers who contributed to the early period of the county’s settlement, it is not eligible under NRHP Criterion B or CRHR Criterion 2 for association with any of the Blairs because it has virtually no historic integrity to the period of association with the John, James, Matthew, or Robert Blair. The road as it is today would be unrecognizable to the early Blair settlers and to the workers they employed in their lumber business.

Blair Road is not significant under NRHP Criterion C or CRHR Criterion 3 because it is not an important example of a type, period, or method of construction, and has no association with a master engineer or builder. The road – a two-lane asphalt-paved mountain road – is a common and ubiquitous property type that can be found throughout El Dorado County, the State of California, and the nation. There is no indication that there were any engineering or construction innovations made during the course of its development and improvement that would merit significance under these criteria.

Blair Road is not significant under Criterion D of the NRHP or Criterion 4 of the CRHR as a source, or likely source, of important historical information nor is it likely to yield important information about historic construction methods, materials or technologies. The history of the road’s development and use is well documented through photographic and textual records, and in its current modern state, it cannot convey any historically significant information about the earlier period of its use.

Blair Road is not eligible for listing in the NRHP or the CRHR because it has lost nearly all of its historic integrity to the period when it had associations with significant events and people, 1860-1925, and it cannot convey its association with that period.

Photographs (continued):
Photograph 8: Blair Road segment near Forebay Road, facing west from culvert, December 21, 2017. Linear Feature Record BR-1.

Photograph 8: Blair Road south of Forebay Road intersection near El Dorado Canal culvert, camera facing north from culvert towards Forebay Road, December 21, 2017. Linear Feature Record BR-1.
Photograph 9: Blair Road and Old Blair Mill Road intersection, facing north, December 21, 2017. Linear Feature Record BR-3.

Photograph 10: Blair Road and Old Blair Mill intersection, facing south, December 21, 2017. Linear Feature Record BR-3.
Photograph 11: Blair Road from Badger Hill Road intersection, facing south, December 21, 2017. Linear Feature Record BR-4.

Photograph 12: El Dorado Canal culvert beneath Blair Road Bridge, facing west, December 21, 2017. Linear Feature Record BR-5.
Photograph 13: Blair Road near 2840 Blair Road, facing north, December 21, 2017. Linear Feature Record BR-6.
Locations of Points described in Linear Feature Records above.
Resource Name or # (Assigned by recorder): El Dorado Main Canal (Lower)

P1. Other Identifier:
- El Dorado Main Canal (Lower)

P2. Location:
- Not for Publication, Unrestricted
- a. County: El Dorado
- b. USGS 7.5' Quad: Pollock Pines Date: 1950 photorevised 1973 T: 11N; R: 12E; Sec: c. Address: N/A City: Camino (Vicinity) Zip: 95709
d. UTM: (give more than one for large and/or linear resources) Zone: 10: 709616mE/4294104mN to
e. Other Locational Data: (e.g., parcel #, directions to resource, elevation, etc., as appropriate)

See Linear Feature Record for recorded canal segments.

P3a. Description:
- Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries

The El Dorado Main Canal historically ran from the vicinity of Kyburz to Placerville. In 1916 the canal was purchased to provide water for the El Dorado Power Plant near Pollock Pines. The portion of the canal below the powerplant forebay was sold to El Dorado Water Company (predecessor of El Dorado Irrigation District) in 1919 and became known as the El Dorado Main Canal. This form records five points and one segment of the lower El Dorado Main Canal, between Forebay Dam and Placerville. The recorded segments begin at the outlet of Long Canyon Forebay and travel southwesterly towards Smith Flat. The canal travels underground in pipes at various segments and the majority of the above-ground segments are open and unlined with a dirt trail on the right bank (Photograph 1). Portions of the canal surveyed on this form are abandoned. See the attached Linear Feature Records for detailed descriptions of the individual points and segments (see Continuation Sheet).

P3b. Resource Attributes:
- List attributes and codes (HP20) – Canal/ditches

P4. Resources Present:
- Building, Structure, Object, Site, District, Element of District, Other (Isolates, etc.)

P5b. Description of Photo:
- View, date, accession#) Photograph 1: El Dorado Main Canal near Blair Bridge, camera facing upstream, December 21, 2017.

P6. Date Constructed/Age and Sources:
- Historic, Prehistoric, Both

P7. Owner and Address:
- El Dorado Irrigation District
 2890 Mosquito Road
 Placerville, CA 95667

P8. Recorded by:
- Heather Norby and Shelby Kendrick
 JRP Historical Consulting, LLC
 2850 Spafford Street
 Davis, CA 95618

P9. Date Recorded: December 21, 2017

P10. Survey Type:
- Intensive

P11. Report Citation:
- Cultural Resources Study for El Dorado Irrigation District's Lower Main Canal Piping Project, Waechter et al. 2018

Attachments:
- None, Location Map, Sketch Map, Continuation Sheet, Building, Structure, and Object Record, Archaeological Record, District Record, Linear Feature Record, Milling Station Record, Rock Art Record, Artifact Record, Photograph Record, Other (list)

Required Information
B1. Historic Name: El Dorado Canal (Lower)
B2. Common Name: El Dorado Main Canal
*B5. Architectural Style: utilitarian
*B6. Construction History: (Construction date, alteration, and date of alterations) Constructed 1873-1876; sold to irrigation interests 1919; Maintained as irrigation ditch 1919-1977; extensive program of piping main ditch begun in 1977 at lower (western end) piped through Camino area in 1957 due to highway construction, additional segments piped in 1990s, bridges replaced over canal at Alder Drive (2016) and Blair Road (2017).
*B7. Moved? ☒ No ☐ Yes ☐ Unknown Date: ____________ Original Location: ________________
*B8. Related Features: ____________
*B10. Significance: Theme: Mining/Irrigation Area: western El Dorado County
 Period of Significance: n/a Property Type: canal Applicable Criteria: n/a
 (Discuss importance in terms of historical or architectural context as defined by theme, period, and geographic scope. Also address integrity.)
This evaluation concludes that the El Dorado Main Canal from Forebay Dam at Pollock Pines, downstream to Placerville has historically significant associations as a large early mining canal, but lacks historic integrity and therefore is not eligible for listing in the National Register of Historic Places (NRHP) or the California Register of Historical Resources (CRHR). This property has been evaluated in accordance with Section 106 of the National Historic Preservation Act of 1966 (as amended) (54 U.S.C. 306108) and its implementing regulations (36 CFR Part 800), and Section15064.5(a)(2)-(3) of the California Environmental Quality Act (CEQA) Guidelines, using the criteria outlined in Section 5024.1 of the California Public Resources Code, and does not appear to be a historical resource for the purposes of CEQA.
(See Continuation Sheet.)
B11. Additional Resource Attributes: (List attributes and codes) ____________
*B12. References: See footnotes.
B13. Remarks:
*B14. Evaluator: Stephen Wee & Heather Norby
*Date of Evaluation: February 2018
 (This space reserved for official comments.)
L1. Historic and/or Common Name: El Dorado Main Canal

L2a. Portion Described: ☑ Entire Resource ☐ Segment ☐ Point Observation
Designation: EDMC-1

*b. Location of point or segment: (Provide UTM coordinates, legal description, and any other useful locational data. Show the area that has been field inspected on a Location Map.)
The point is located at the upstream end of the lower El Dorado Main Canal as the outlet of Long Canyon Forebay Dam. It is approximately 450 feet southeast from the intersection of Forebay Road and Blair Road.
UTM: Zone 10, NAD 83, 709616mE/4294104mN

L3. Description: (Describe construction details, materials, and artifacts found at this segment/point. Provide plans/sections as appropriate.)
This point on lower El Dorado Main Canal has a small, concrete slide gate with angled wing wall on both sides. Wood flashboards control flow in the canal (Photographs 2 and 8). The right bank steeply slopes down to Blair Road below, and the left bank is sharply upslope at this point. The control structure allows flows to be diverted downslope where it is passes through a culvert under Blair Road and then released. Two concrete control vaults are present on the right bank, one in line with the slide gate, and the other a short distance upstream. Further upstream a large pipe crosses the canal, with a wooden staircase up and over (Photographs 2 and 9).

L4. Dimensions: (in feet for historic features and meters for prehistoric features)
a. Top Width: 5.5 feet (approx.)
b. Bottom Width: 4 feet (approx.)
c. Height or Depth: 2 feet (approx.)
d. Length of Segment: N/A

L5. Associated Resources: Forebay Dam

L6. Setting: (Describe natural features, landscape characteristics, slope, etc., as appropriate.)
The canal is located in a rural area of El Dorado County and is surrounded by wooded areas, large lot residential and agricultural uses.

L7. Integrity Considerations: The structures at this point were likely built or modified in 1923 when Forebay Dam was constructed.

L8b. Description of Photo, Map, or Drawing: Photograph 2: El Dorado Main Canal at Long Canyon Forebay, camera facing upstream, December 21, 2017.

L9. Remarks:

L10. Form prepared by:
Heather Norby and Shelby Kendrick
JRP Historical Consulting, LLC
2850 Spafford Street
Davis, CA 95618

L11. Date: December 21, 2017
L1. Historic and/or Common Name: El Dorado Main Canal

L2b. Location of point or segment: (Provide UTM coordinates, legal description, and any other useful locational data. Show the area that has been field inspected on a Location Map.) This segment of El Dorado Main Canal begins near a pacific yew tree approximately 0.25 miles east of Blair Road Bridge and ends approximately 0.3 miles downstream a culvert beneath Blair Road Bridge. UTM: Zone 10, NAD 83, 708819mE/4292684mN (upstream endpoint); 708260mE/4292655mN (downstream endpoint)

L3. Description: (Describe construction details, materials, and artifacts found at this segment/point. Provide plans/sections as appropriate.)
This segment of El Dorado Main Canal begins near a pacific yew tree, where there is also a wooden pedestrian bridge over the canal. A wood dock is present in the canal just downstream from the yew tree. There are two bends in the canal’s alignment as it approaches Blair Road Bridge (Photographs 10-12). Following the second bend, the canal segment runs northwest for approximately 0.06 miles until it meets the culvert beneath Blair Road Bridge. The right bank of the canal has a trail on the embankment that follows the length of the segment; whereas the left bank abuts private, wooded residential property. Blair Road Bridge and the culvert were replaced in 2017 (Photographs 3 and 13-16).

L4. Dimensions: (in feet for historic features and meters for prehistoric features)
 a. Top Width: #### feet (approx.)
 b. Bottom Width: #### feet (approx.)
 c. Height or Depth: #### feet (approx.)
 d. Length of Segment: 1,658 feet (approx.)

L5. Associated Resources: Blair Road Bridge

L6. Setting: (Describe natural features, landscape characteristics, slope, etc., as appropriate.)
The canal is located in a rural area of El Dorado County and is surrounded by wooded areas, large lot residential and agricultural uses.

L7. Integrity Considerations: Replacement of Blair Road Bridge and culvert over the canal represents a loss of integrity of design, materials, and feeling. Severe undercutting of the canal’s banks has also deteriorated integrity of design.

L8a. Photograph, Map, or Drawing.

L8b. Description of Photo, Map, or Drawing: Photograph 3: El Dorado Main Canal at Blair Road Bridge, camera facing downstream from bend, December 21, 2017.

L9. Remarks:

L10. Form prepared by:
Heather Norby and Shelby Kendrick
JRP Historical Consulting, LLC
2850 Spafford Street
Davis, CA 95618

L11. Date: December 21, 2017

*Required Information
L1. Historic and/or Common Name: El Dorado Main Canal

*b. Location of point or segment: (Provide UTM coordinates, legal description, and any other useful locational data. Show the area that has been field inspected on a Location Map.) The point is located on the west side of 5561 Pony Express Trail.

UTM: Zone 10, NAD 83, 707296mE/4291755mN

L3. Description: (Describe construction details, materials, and artifacts found at this segment/point. Provide plans/sections as appropriate.)

At this point, the canal passes beneath a private driveway through a metal pipe culvert. The earth canal is heavily scoured at this location and the banks are covered with debris, brush, and trees. (Photographs 4, 17, and 18).

L4. Dimensions: (in feet for historic features and meters for prehistoric features)

a. Top Width: ### feet (approx.)

b. Bottom Width: ### feet (approx.)

c. Height or Depth: ### feet (approx.)

d. Length of Segment: ### feet (approx.)

L5. Associated Resources: None

L6. Setting: (Describe natural features, landscape characteristics, slope, etc., as appropriate.)

The canal is located in a rural area of El Dorado County and is surrounded by wooded areas, large lot residential and agricultural uses.

L7. Integrity Considerations: Severe scouring has diminished the canal’s integrity of design, materials, workmanship, and feeling at this location.

L8a. Photograph, Map, or Drawing.

L8b. Description of Photo, Map, or Drawing:

Photograph 4: El Dorado Main Canal west of 5561 Pony Express Trail, camera facing upstream, December 21, 2017.

L9. Remarks:

L10. Form prepared by:
Heather Norby and Shelby Kendrick
JRP Historical Consulting, LLC
2850 Spafford Street
Davis, CA 95618

L11. Date: December 21, 2017
L1. Historic and/or Common Name: El Dorado Main Canal

L2a. Portion Described: ☑ Entire Resource ☑ Segment ☒ Point Observation

Designation: EDMC-4

*Recorded by: H. Norby and S. Kendrick
*Date: December 21, 2017

L3. Description: (Describe construction details, materials, and artifacts found at this segment/point. Provide plans/sections as appropriate.)

The canal is passed beneath the Alder Drive bridge by a concrete culvert consisting of two concrete pipes. The bridge and the culverts were constructed in 2016 to replace an existing bridge and culvert. This point is the downstream end of El Dorado Irrigation District’s maintenance of the canal. The ditch on the upstream side of the bridge/culvert is groomed, and the ditch on the downstream side it heavily overgrown (Photographs 5 and 19-22).

L4. Dimensions: (in feet for historic features and meters for prehistoric features)

a. Top Width: 15 feet (approx.)
b. Bottom Width: ### feet (approx.)
c. Height or Depth: ### feet (approx.)
d. Length of Segment: ### feet (approx.)

L5. Associated Resources: None

L6. Setting: (Describe natural features, landscape characteristics, slope, etc., as appropriate.)
The canal is located in a rural area of El Dorado County and is surrounded by wooded areas, large lot residential and agricultural uses.

L7. Integrity Considerations: This point on the canal has lost integrity of design, material, workmanship, and feeling because of the 2016 bridge replacement project that replaced the existing culvert.

L8b. Description of Photo, Map, or Drawing:
Photograph 5: El Dorado Main Canal at Alder Road Bridge, camera facing upstream from downstream end of the culvert, December 21, 2017.

L9. Remarks:

L10. Form prepared by:
Heather Norby and Shelby Kendrick
JRP Historical Consulting, LLC
2850 Spafford Street
Davis, CA 95618

L11. Date: December 21, 2017
L1. Historic and/or Common Name: El Dorado Main Canal

L2a. Portion Described: ☑ Entire Resource ☐ Segment ☑ Point Observation
Designation: EDMC-5

*Recorded by: H. Norby and S. Kendrick
*Date: December 21, 2017

L2b. Location of point or segment:
(Provide UTM coordinates, legal description, and any other useful locational data. Show the area that has been field inspected on a Location Map.) The point is located on the north side of Carson Road, approximately 0.73 miles east from the North Canyon Road intersection.
UTM: Zone 10, NAD 83, 697234mE/4290746mN

L3. Description: (Describe construction details, materials, and artifacts found at this segment/point. Provide plans/sections as appropriate.)
This point on the El Dorado Main Canal consists of an unmaintained culvert that passes beneath Carson Road. The culvert was completely full of sediment at the time of survey. The bank above the downstream end of the culvert is lined with large rocks and broken pieces of concrete. The canal is approximately 15 feet across the top and appears to be about 5 feet across the bottom, although sediment build-up obscures the majority of the canal prism (Photograph 6 and 23).

L4. Dimensions: (in feet for historic features and meters for prehistoric features)
 a. Top Width: 15 feet (approx.)
 b. Bottom Width: 5 feet (approx.)
 c. Height or Depth: 8 feet (approx.)
 d. Length of Segment: N/A

L5. Associated Resources: None

L6. Setting: (Describe natural features, landscape characteristics, slope, etc., as appropriate.)
The canal is located in a rural area of El Dorado County and is surrounded by wooded areas, large lot residential and agricultural uses.

L7. Integrity Considerations: This point along the canal has lost integrity of design, workmanship, and feeling because it is not maintained and is gradually being filled in with sediment and vegetation.

L8a. Photograph, Map, or Drawing.

L8b. Description of Photo, Map, or Drawing:
Photograph 6: El Dorado Main Canal at Carson Road, camera facing southeast, December 21, 2017.

L9. Remarks:

L10. Form prepared by:
Heather Norby and Shelby Kendrick
JRP Historical Consulting, LLC
2850 Spafford Street
Davis, CA 95618

L11. Date: December 21, 2017
L1. Historic and/or Common Name: El Dorado Main Canal

L2a. Portion Described: [] Entire Resource [] Segment [] Point Observation
Designation: EDMC-6

*Recorded by: H. Norby and S. Kendrick
Date: December 21, 2017

L3. Description: (Describe construction details, materials, and artifacts found at this segment/point. Provide plans/sections as appropriate.)
This point on El Dorado Main Canal consists of an abandoned culvert in the earthen ditch on the upstream side of Airport Road. The culvert and ditch are completely full of sediment and debris, and the ditch has several small trees growing within the bed. Airport Road is situated approximately 6 feet above the bed of the unlined earth ditch.

L4. Dimensions: (in feet for historic features and meters for prehistoric features)
 a. Top Width: 10 feet (approx.)
 b. Bottom Width: 4 feet (approx.)
 c. Height or Depth: 6 feet (approx.)
 d. Length of Segment: N/A

L5. Associated Resources: None

L6. Setting: (Describe natural features, landscape characteristics, slope, etc., as appropriate.)
The canal is located in a rural area of El Dorado County and is surrounded by wooded areas, large lot residential and agricultural uses.

L7. Integrity Considerations: This point along the canal has lost integrity of design, workmanship, and feeling because it is not maintained and has gradually filled in with sediment and vegetation.

L8a. Photograph, Map, or Drawing:

L8b. Description of Photo, Map, or Drawing:
Photograph 7: El Dorado Main Canal at Airport Road, camera facing west, December 21, 2017.

L9. Remarks:

L10. Form prepared by:
Heather Norby and Shelby Kendrick
JRP Historical Consulting, LLC
2850 Spafford Street
Davis, CA 95618

*Required Information
B10. Significance (continued):

Historic Context

Portions of the El Dorado Canal have previously been evaluated. Most evaluations have focused upon the upper portion of the canal from Pollock Pines to Kyburz where the mining ditch was converted to hydroelectric purposes in the 1920s. The upper portions of canal were found to lack integrity and despite its importance as a mining canal in the 1870s it was not eligible for the NRHP. Portions of the canal’s support structure consisting of dry laid granite rock walls, however, were found to be eligible for the NRHP under Criterion C as a discontiguous historic district. Only three evaluations of segments of the lower portion from Pollock Pines to Placerville have been completed. This portion of the canal was originally used to supply water for hydraulic mining districts in the vicinity of Placerville. As hydraulic mining declined after the 1884 Sawyer decision banning most hydraulic mining, the canal was increasingly used for irrigation of orchards on “Fruit Ridge” in the vicinity of Camino and for municipal purposes in and around Placerville.

The Gold Rush and Early Water Development in the South Fork American River Watershed, 1850s -1900

Discovery of gold at Sutter’s saw mill on the South Fork of the American River at Coloma set off the California Gold Rush in 1849-1850. As word spread the first influx of people arrived by ship from all over the world. They came up the river by boat from San Francisco to Sutter’s Fort and then headed overland to the gold district through Folsom. With good overland freight access from Sacramento, Placerville became the gateway to Coloma and the first major center for commerce as mining spread throughout the Sierra gold belt. Emigrants later arriving by wagon trains from the east and crossing the Sierra Nevada also found passage by way of the South Fork of the American River canyon arriving at Placerville, the first supply town encountered in the gold fields.

Water was an essential element in extracting gold from mineral lands by means of placer and hydraulic methods of mining. The early forms of mining adopted in the California gold fields involved washing gravel and sands from streambeds with water in a pan to remove the lighter materials, leaving the heavier gold behind. While miners used simple pans at first, they soon formed associations with other miners and began using rockers and sluices that allowed for washing greater amounts of gravel and sand. Sluices especially required development of a steady supply of water. During the 1850s and early 1860s rules and regulations established by the miners themselves, and varying from district to district, came to govern the appropriation of water from the streams. In the absence of federal or state laws governing the use of water, among the fundamental principles established in the mining camps and districts were recognition of the rights to water through prior appropriation and continued beneficial use. The rules established by these miner’s associations evolved into the organization of more elaborate systems of local customs and laws that provided for the establishment of rights of way for ditches and canal construction across public land for mining and other useful purposes.

Under recognition of these customs, mining began to move away from the existing river beds to expose ancient gravel deposits on historic streambeds. The new mining companies were able to construct ditches to bring needed water to their dry mining sites. New forms of mining came into use including hydraulic mining and quartz mining, both requiring large quantities of water for either the hydraulic monitors or stamp mills. As directing water to desired mining locations grew more important, companies organized for the purpose of diverting the water supply of natural watercourses into canals and ditches to convey water to new places of intended use. The Coloma ditch was the first such mining ditch constructed in El Dorado County in 1850. Most of these early water conveyance features were relatively short, under ten miles, and utilized

basic engineering, usually simple ditches cut into the surrounding soils, or where necessary blasted through rock to carry water at a hydraulic gradient to its place of use.\(^3\)

As hydraulic mining developed, an engineer from New York, John Kirk, had an idea for a canal system in the South Fork of the American River watershed capable of providing a steady source of water through the dry months with sufficient pressure to operate hydraulic mines. The water storage and conveyance system would require the creation of several large storage dams forming reservoirs high in the Sierra Nevada and extending a high-line canal from Kyburz down the South Fork of the American River Canyon to the placer mining districts surrounding Placerville. While engaged in other smaller canal ventures in El Dorado County during the 1850s, he initiated his surveys of potential routes for his major hydraulic mining water supply project on the South Fork.\(^4\)

Over subsequent decades John Kirk developed smaller ditches in the lower canyon area, but was only able to conduct surveys and preliminary work on his larger vision. During the 1860s with the help of Francis A. Bishop, a prominent San Francisco financier and another early mining canal proponent, Kirk surveyed the line for the El Dorado Canal, filed water appropriations at the upper end of the canal, and began preliminary work surveying dam and reservoir sites. By 1872 Kirk and Bishop filed appropriations on local streams feeding into the South Fork of the American River covering 350 square miles.\(^5\)

By the 1870s, interest in hydraulic mining in the Sierra Nevada was increasing as the Comstock Lode waned. During this period, the ascendancy of hydraulic mining required extensive investment of capital and mining operations consolidated and attracted investors. Kirk and Bishop needing more capital to complete the project sold their water rights and their preliminary work to the El Dorado Water and Deep Gravel Mining Company (EDW&DGM) in 1873. Bishop stayed on as a board member and supervising engineer. While the company purchased other canals as well, the El Dorado Canal was to be the water source for extensive hydraulic mining operations. The company was able to complete most of the lower canal in 1874, an earthen ditch measuring four-to-six feet deep, four-to-five feet across the bottom, and 12 to 15 feet across the top. Numerous groups of workers were employed on the project including Americans, recent immigrants, and groups of Chinese contract laborers. The upper canal’s construction took two more years, as it was hampered by hidden geologic features including extensive granite outcroppings that had to be removed by blasting. The challenges posed by rough terrain and high cost of lumber for trestles supporting wooden flumes, resulted in the construction of dry-laid granite bench walls to support flumes where needed. The extensive rock construction and quality workmanship of the 40-mile canal was noted by newspapers of the time as highly noteworthy. In the end the canal cost $650,000 to build, an astronomical sum at that time.\(^6\)

The substitution of dry-laid rock walls to support flumes was intended to last for many decades, but hydraulic mining only had another decade before it was significantly curtailed. Hydraulic mining expanded upon the early sluices by using pressurized water to wash gravel from of the mountain side to expose gold-bearing gravels of ancient streambeds. The run-off was then funneled through a series of sluices containing riffles where the gold settled out. EDW&DGM consolidated

served earlier placer mining sites south of Placerville and purchased other sites to the north. The water from the El Dorado Canal yielded significant sums from these mines and revived mining in the area around Placerville in the late 1870s. Water delivered by the main ditch fed into several regulating reservoirs including Blakeley, Reservoir Hill, Placerville, Coon Hollow, and Weber. These reservoirs allowed hydraulic mining operations to use massive quantities of water in ten-hour bursts. The reservoirs would then recharge over the remaining fourteen hours without the company enlarging the main canal to provide the same quantity of water over a 24-hour period. The use of regulating reservoirs also reduced wasted water. The success had investors looking at expanding the reservoir and ditch systems by 1880. Hydraulic mining, however, washed tons of debris and sediment down into the agricultural valleys and contributed to flooding. Farmers had protested, but not until 1884 with the decision in Woodruff v. North Bloomfield Gravel Mining Company was hydraulic mining substantially considerably restrained. Known as the Sawyer decision (named for the judge), this federal court ruling effectively checked large-scale hydraulic mining in the Sierra Nevada by ending the practice that sent mining tailings and debris into rivers causing flooding and consequent damage to downstream farmers and to shallowing of navigable waterways. The end of hydraulic mining created problems for canals like the El Dorado as hydraulic mining had been their main source of income. EDW&DGM shifted some operations to drift mines and used increasing amounts of water for milling [crushing] quartz to extract gold. But, the lack of mining income posed a serious financial problem for EDW&DGM that irrigation and domestic water customers could not cover. The company finally sold the canal in 1906.7

The El Dorado Canal Transitions to Provide Hydroelectric Power and Water Service to Agricultural and Domestic Water Users, 1907 – 1920s

Between 1907 and 1916 the El Dorado Canal was sold numerous times and portions of the water conveyance system were allowed to fall into disrepair although the water system continued to deliver water down to the Placerville region. In 1916 the canal was sold to the Western States Gas & Electric Company (WSG&E). Sales of the water system over the previous decade had often included companies with an interest in hydroelectric power generation. WSG&E was the first purchaser with the necessary capital to carry the project forward. The company formed from the consolidation of several smaller companies and sought new water rights and hydroelectric power sites to provide cost effective electrical power. The company had already acquired the American River Electric Company’s plant on the South Fork of the American River north of Placerville. Purchase of the El Dorado Canal and other water conveyance holdings of the former EDW&DGM insured that water could be delivered year-round to the existing power plant.8

Immediately following purchase, WSG&E announced that the existing water conveyance system, including the El Dorado Canal, and any additional high mountain reservoirs established by WSG&E would be dedicated to hydroelectric power development. Previous water users were grandfathered in and would continue to receive their existing allotments of water, however, increased agricultural and domestic or municipal uses would not be accommodated. This caused consternation among residents of Placerville and among the farmers and fruit growers located along Fruit Ridge to the east to Camino. The El Dorado Canal was the main water supply for the city. The Placerville Water Company, which supplied the central and eastern part of the city, came under the influence of Francis A. Bishop in 1860. When Bishop sold his water rights and interest in the El Dorado Canal to EDW&DGM in 1873, provision was made to provide water to the city from the canal. Similarly, the canal provided water to orchardists across the Fruit Ridge from Placerville to Camino. The area was rapidly expanding fruit crops in the years around World War I and numerous orchards were planted in the foothills on the west side

7 Wee, Sharon A. Waechter, and Meredith Rucks, Proposed Relicensing of the El Dorado Hydroelectric Project (FERC Project 184), 29; Stephen Wee, History of the South Fork of the American River Water Supply Development, 3-40, 3-65,4-71, 4-75, 4-77, 4-80, 4-87, 4-90, 4-91, 5-95.
of the county which would require additional irrigation water over the coming years. Restricting water deliveries for these two groups to the existing level would inhibit further growth.9

Local farmers, orchardists, and businessmen joined together to form the El Dorado County Water Users Association. In 1917, these local groups took their concerns and complaints about water shortages to the California Railroad Commission, the state body regulating public utilities. The Railroad Commission found the arguments of both sides had some merit and ruled that both irrigation and hydroelectric power were valid public uses of water. The Railroad Commission also indicated that the area had sufficient water for both uses and that the two bodies should form a compromise. After two years of negotiations (1917-1919), the local water users secured a determined amount of water for domestic and irrigation purposes that provided for regular growth to be supplied to the El Dorado Water Company, which had been formed by the local water users group.10

The agreement between the El Dorado Water Company (EDWC) and WSGEC included not just establishment of a base-line water supply, but also transferred the lower part of the canal from Pollock Pines to Placerville to the EDWC. Continuing water service to all locations supplied through this lower segment of the ditch system also became the responsibility of the EDWC.11

The continuing growth of agriculture through the 1920s made it clear that EDWC would need to develop additional water sources as WSGEC limited its sales of water to EDWC to the amount contracted for in 1919. Two potential sources were available, Weber Creek and the North Fork of the Cosumnes River and its tributaries to the south. In 1922, the EDWC took measures to attempt to attain both. Refinancing as the El Dorado Water Corporation, the corporation undertook construction of a reservoir on Weber Creek and purchased an option on the Diamond Ridge Water Company which operated in the North Fork of the Cosumnes River watershed. The attempt to develop both sources proved too much and the El Dorado Water Corporation ran into financial difficulties.12

Agriculture: Fruit Culture in the Placerville-Camino District, 1880s-1920

Fruit culture during the gold rush era and in subsequent decades was incidental to the mining economy of California. By the closing years of the 19th century, however, it had become one of the chief industries of the state. From the early days of statehood, El Dorado County was among the leading gold mining districts of the state, but in the 1880s it began making a name for itself as a choice fruit-growing region. A local citizens committee reported on irrigation in several of the fruit districts of El Dorado County in 1883. It noted that fruit growing extended as far to the east as 30 miles from Placerville. Facilities for irrigation on a large scale in this “Central Region” of the county lying between the South Fork and Weber Creek were rated as good to excellent with the area being served, where irrigation was needed, by the EDW&DGMC’s extensive canal system.13

As gold mining declined and horticulture advanced, the extensive systems of canals facing the mining districts were put to new uses and ultimately became as important for irrigation as they had been for mining. The principal irrigation ditches in the county in the 1890s were owned by the California Water and Mining Company, the Natomas Water & Mining Company,

11 Stephen Wee, History of the South Fork of the American River Water Supply Development, 6-140, 6-143; Adams, Irrigation Districts in California, Bulletin No. 29, 135.
13 The Mountain Democrat, April 21, 1883.
the EDW&DGMC, and the Park Canal & Mining Company. All of these companies originally constructed their canal systems primarily to serve the mining interests of the county.14

Along the ridge between the South Fork of the American River and Weber Creek that was served by the El Dorado Canal [i.e., formerly a portion of the lower EDW&DGMC canal], the acreage planted with fruit trees continued to grow at a relatively constant, but slow, pace from the late 1890s until the early 1910s when higher prices for fruit encouraged farmers to accelerate planting of orchards in that district. Wherever water was available, new orchards sprang up. Along the ridge above Placerville, around Camino, also in the Gold Hill and Missouri Flat sections of the county new orchards on irrigated land continued to be laid out through the late 1910s at a brisk pace. The Mountain Democrat reported in 1917 that many acres of new orchard would come into bearing in the Placerville District within the next two or three years, adding materially to the tonnage of pears, prunes, plums, peaches, apples and walnuts, sent to the local packing sheds and shipped out of the region. In fact, the area east of Placerville up to Camino became well-known in the World War I era as “Fruit Ridge,” a designation that appeared on USGS topographic sheets in subsequent years.15

With all of the new orchards being planted, water supply became an increasing concern to growers investing in tree crops. At the close of the fruit season in 1917, local growers looked to the future with some apprehension because of possible future water shortages. For example, the stable fruit crop grown in the area east of Placerville serviced by the El Dorado Canal was Bartlett pears in the early decades of the 20th century. Bartlett pear trees require more water than other fruit trees, and their demand for water increases as they mature. Many of the orchards planted within the service area of the El Dorado ditch had not reached maturity yet when Western States took over the canal system in 1916.16

The number of acres irrigated in the district served by the El Dorado Canal was estimated variously by different witnesses of the complainant and defendant in the El Dorado County Water Users Associate vs. Western States Gas and Electric Company case as from as much as 3,409.52 acres down to 3,148.5 acres.17 Either number represents a substantial increase over the acreage irrigated at the turn on the century. By 1922 farmers and orchardists in the region serviced by the El Dorado Canal expected to irrigate 5,355 acres.18

As early as 1913, the El Dorado County Board of Trade appointed a special committee to look into the legal aspects of the water question. They warned farmers and orchardists of the need to establish and protect their water rights through continuous use, even as consumers of water supplied by the canal companies. The Railroad Commission, noted the committee, was charged with protecting their water supply, but it would require attentiveness on the part of irrigators to ensure future water deliveries.19

In fact, over the next several years, the farmers and irrigators of the region did exhibit vigilance in protecting their interests and the future water supply for irrigation uses. Western States Gas & Electric Company, which acquired the El Dorado Canal in 1916, had other plans for the water diverted into the El Dorado Canal and the waters stored in its high mountain reservoirs. Not until 1919, after hearings before the Railroad Commission failed to resolve the issues between the parties, did the two sides negotiate an agreement that ensured certain waters would be available for both irrigation and hydroelectric power development from the South Fork of the American River and the El Dorado Canal.

14 Annual Report of the State Board of Horticulture of the State of California for 1892 (Sacramento: State Printers, 1892), 102-104.
15 Mountain Democrat, October 7, 1916.
17 El Dorado County Water Users Association vs. Western States Gas and Electric Company, Case No. 1107 before the Railroad Commission of the State of California, Reporter’s Transcript, 241.
18 El Dorado County Water Users Association vs. Western States Gas and Electric Company, Case No. 1107 before the Railroad Commission of the State of California, Reporter’s Transcript, 247.
19 Mountain Democrat, May 17, 1913.
The City of Placerville’s domestic and municipal water service was provided by private corporations until 1920 when the City of Placerville stepped in to take control over distribution of the municipal water supply within the city limits. The primary distributor of water within the town was the Placerville Water Company (PWC), and its successor in interest Placerville Water Works (PWW). After completion of the El Dorado Canal in 1876, EDW&DGM provided a separate distribution network to the lower section of town, as well as selling water from its canal network wholesale to the other private water company providing water service in Placerville.

Alexander Hunter, Alfred Bell, and John L. Thober incorporated PWC in 1853 for the purpose of providing water to the City of Placerville from adjacent springs, wells and canals to generate mechanical power, for manufacturing, domestic and certain municipal uses, and for irrigation of yards and gardens.20 The following year PWC completed the first municipal water system drawing its water supply from nearby springs, local watercourses such as Hangtown Creek and Cedar Ravine, and by purchasing water from the South Fork Canal Company when needed.21

In 1873, Francis A. Bishop, president of PWC at the time, reorganized the company into a new corporation and sold its canals and water rights to EDW&DGM.22 As partial consideration, Bishop was given a long-term lease agreement for delivery of water for non-mining uses within the City of Placerville from the El Dorado Canal at below market rates for a term of 50 years. If, or when, Bishop desired to sell his water works and reservoirs in Placerville, EDW&DGM was to be given the first right of purchase and the right to match any offer made for Bishop’s water properties in the city.23 Nevertheless, Bishop later transferred the contract to the PWC in 1893 and Placerville Water Works (PWW) was incorporated that same year to take control of the municipal water system previously operated by PWC.24 The only franchise the company operated under was the September 26, 1873 agreement between Bishop and EDW&DGM to furnish water to the City of Placerville for all purposes, except mining, for a period of 50 years. PWW continued to purchase water under this contract until 1920.25

By 1913 PWW served about 1,500 persons and EDW&DGM served another 120 or so connections representing perhaps another 500 persons.26 The distribution mains of PWW covered approximately three-quarters of the city, mostly the central and upper districts of the town; however, inadequate pressure was evidenced by the difficulty the company had in getting water under adequate pressure on a continuous basis to residences on the hillsides. The remaining population living outside PWW’s distribution system in the lower part of town purchased water directly from the owner of the El Dorado Canal. Thus, the owner of the El Dorado Canal provided water wholesale to PWW, and was both a wholesaler and retailer of water.27 The main source of public water supply for the City of Placerville after the contract was made between Bishop and EDW&DGM was the South Fork of the American River. Since 1876, this water supply was taken from the El Dorado Canal. The regulating reservoir at Five Mile House (Blakeley Reservoir) served as the primary facility for controlling water flows into

20 “Placerville Water Company,” Articles of Incorporations, April 14, 1853. No. 7793, Records of the California Secretary of State, California State Archives, Sacramento.
21 Mountain Democrat, February 25, 1854.
22 El Dorado Republican, September 18, 1873.
23 EDW&DGM to F. A. Bishop, September 26, 1873, Lease A: 304, El Dorado County Recorder’s Office.
the lower ditch distribution network of the El Dorado Canal system. Other lower distribution reservoirs released water to keep the system under pressure and to meet municipal demand in Placerville.28

Except when shut down for repairs or closed due to an outage, the El Dorado Canal supplied the city with sufficient water to meet all of its needs. The major problem with the municipal water supply was inadequate pressure in the central and upper portions of the city to provide adequate fire protection due to the low elevation of the terminal impounding reservoirs owned by PWW. The city of Placerville in 1919 decided to purchase the distribution systems and assume the public service obligations associated with municipal water service and the following year it did so. The city planned to improve water service to the community by providing new terminal reservoirs to replace those owned by PWW. By taking water directly from El Dorado Water Company to the top of the bluff on south side of town and storing it in a new reservoir, water could be delivered to the upper part of town and also delivered in a connecting pipe down the principal pipeline into the center of town. This would create sufficient pressure to enhance fire protection. Second, the city planned to acquire Forni Pipeline from El Dorado Water Company the two old private water systems would be connected for the first time, resulting in better fire protection and domestic service.29 With the exception of the small town of Camino with its population of around 150, there were relatively few permanent communities of importance in the watershed of the South Fork of the American River above Placerville up to the point of diversion of the El Dorado Canal at Cedar Rock.30

El Dorado Irrigation District, 1925 -2000s

The El Dorado Irrigation District (EID) was formed in 1925 and succeeded the El Dorado Water Company and El Dorado Water Corporation in 1927. EID covered 30,703 acres between Pollock Pines and west of Placerville. The district was only about a mile wide at Pollock Pines where the main canal, purchased from WSGEC, emerged from the forebay to about seven miles wide west of Placerville (Map 1). The district formed under the California Irrigation District Act of 1913, which had its origins in the Wright Act of 1887. Under the laws governing irrigation districts, the district had the ability to tax users for the maintenance and operation of the system, and also had the ability to issue bonds to finance additional work. The system that EID managed in 1927 included some 70 miles of main and lateral distribution ditches along with some main pipelines for delivery of municipal water within Placerville and for assorted industrial water users. Water use within the district had nearly doubled since the 1919 agreement, and was still a limiting factor in continued agricultural development of the area.31

28 “The Water Situation to Date,” *Mountain Democrat*, March 8, 1913.
The challenges of securing water continued to be a problem for the irrigation district. In 1928, engineer S. J. Norris provided the irrigation district with a plan for securing additional water through development of a new reservoir in Hazel Valley, now known as Sly Park Reservoir or Jenkinson Lake. The district soon found that the Sly Park project was too large to undertake during the economic depression of the 1930s. Burdened with debt, the irrigation district appealed to the Reconstruction Finance Corporation for financing. With this money the district was able to acquire the Diamond Ridge Water Company, its canals and water rights along the North Branch of the Consumnes River. Through the federal Works Progress Administration, the district was able to rehabilitate the Diamond Ridge system and secure water for the western portions of the district. Federal support, however, did not permit the district to continue plans to develop the Sly Park Reservoir.

The acquisition of the Diamond Ridge facilities and raising Blakeley Reservoir five feet was sufficient to get the district through World War II, but water remained a limited resource. Following World War II, EID requested the help of the US Bureau of Reclamation (Reclamation) to design and develop the Sly Park project. Congressman Clair Engle, who represented this area, took up the project and incorporated Sly Park into the authorization for the Folsom Dam as part of the Central Valley Project (CVP). Construction of the Sly Park Dam began in 1951 and was completed in 1955 with the EID able to secure both benefits of water supply from the project.

Post-World War II development in the lower foothills nearer Sacramento replaced livestock grazing with residential tracts, which induced new areas to join EID as their water demand increased. The district gained 11,200 acres to the southwest between Hanks Exchange and Shingle Springs, and by 1960 the district was deemed the best means of supplying water from Pollock Pines west to the county line. The existing EID system that developed over time, utilizing a variety of old mining ditches including the lower portion of the El Dorado Canal, was inefficient, losing substantial water through seepage and evaporation. Working with the Reclamation, EID began developing a piped distribution system in the 1950s. Sometime between 1950 and 1976, EID built a water treatment plant known as Reservoir 1 just north of Sportsman’s Hall. Concurrently, EID developed a piped distribution system to deliver the treated water to domestic water users, abandoning the lower ditch for that purpose. The lower ditch below Reservoir 1 continued to deliver some raw water, but by 1960 sections west of Camino, near Five Mile Terrace, and near the Placerville Airport were also realigned and piped. The drought in the late 1970s encouraged further piping in order to avoid water loss through evaporation and seepage. Extensive piping led to the eventual abandonment of the El Dorado Canal downstream of the Alder Drive Bridge. Since EID abandoned the lower canal below Alder Creek Bridge, some property owners have altered the ditch where it crosses their property, in some cases, filling it in.

EID continued to grow in the latter part of the twentieth century. In 1960 EID began to take on additional tasks including waste water treatment. Development of the district enlarged it to encompass the area from Pollock Pines west to the Sacramento County line, north to Coloma and south to the western edge of Diamond Springs (Map 2). During this process, other irrigation and water districts were subsumed into the district. EID’s growth was expensive and beginning in the 1960s the district sought hydroelectric generation opportunities to offset the water development and distribution costs. In 1995 the district gained the hydro-electric generation facilities at the El Dorado Power Plant, north of Pollock Pines. This facility was a Pacific Gas & Electric (PG&E) plant, the origins of which date to 1919 when the El Dorado Canal was divided between WSGEC and EID’s predecessor. WSGEC greatly improved the upper portion of the canal, and established the plant. WSGEC developed as much of the water capacity as feasible on the South Fork of the American River and merged with PG&E in 1928. PG&E made several improvements including constructing the Esmeralda Tunnel and Slide Tunnel, as well as upgrading earlier wooden construction in multiple locations. Serious flooding and a mechanical failure in the powerhouse in 1993 led PG&E to sell the system to EID. While the entirety of the historic El Dorado Canal is again in EID’s ownership, the different historical uses of the two portions has resulted in different types of changes. The upper section was highly modified in the 1920s and maintenance also inflicted changes upon the canal. The lower canal no longer functions as it did historically to deliver water down to Placerville with turnouts along the way serving customers. The distribution system has overwhelmingly been converted to pipeline, and the segment between Forebay and Reservoir 1 that is still operating as open ditch only serves two irrigators. The abandoned ditch below Alder Drive Bridge has substantially lost integrity through accumulation of sediment and vegetation, piping, infill, and the construction of modern road crossings.

Evaluation

Portions of the El Dorado Canal have been previously evaluated. Past evaluations have generally dealt with the upper canal, above Forebay Dam at Pollock Pines up to the point of diversion on the South Fork of the American River near Kyburz, or the lower canal between Forebay Dam and the downstream end near Placerville because of their separate twentieth-century historic contexts. The upper canal is associated with hydropower generation and the lower canal is association with irrigation and domestic water supply.

The upper canal was first comprehensively documented as a linear water conveyance structure in 1990 by archaeologist A. Glenn Caruso, of Caruso Cultural Resources Management, who recorded the canal between Kyburz and the El Dorado Forebay as CA-ELD-511H. Laurence H. Shoup prepared an historical overview and significance evaluation for the canal to accompany the recordation. While recognizing the canal as an important water development feature associated with the era of hydraulic mining, Shoup’s evaluation hinged on the modernization, enlargement, and reconstruction of the upper canal in the 1920s by Western States Gas & Electric Company. He concluded that, “as a whole,” the upper canal as it then existed was more directly associated with its use for supplying water for hydro-electric power generation from the point of diversion at Kyburz to the Forebay near Pollock Pines, therefore it lacked historic integrity to the earlier mining period and was no longer able to convey significance for its association with hydraulic mining in the nineteenth or early twentieth century. Shoup also argued, however, that one type of resource within the canal system retained its historical significance and integrity: the dry-laid granite rock walls built in the 1870s that for the most part survived the canal reconstruction of the

1920s. He stated that the rock walls were significant at the local and state level of significance as a “discontiguous district” associated with the Chinese (National Register Criteria A and C, for ethnic heritage), and as an important example of late nineteenth century construction (National Register Criterion C, for engineering). The California State Historic Preservation Officer (SHPO) concurred that the system as a whole lacked integrity and was not eligible, but agreed that there was some potential for the rock walls to be eligible under National Register Criterion C; the SHPO disagreed with Shoup’s finding of significance under National Register Criteria A and C for its association with Chinese laborers, as no concrete evidence of “Chinese” association in construction methods or technologies had been provided (Caruso 1990; Gualtieri 1991; Shoup 1990).

In 1991, Stephen Wee and Rand Herbert of JRP Historical Consulting Services undertook the comparative study of rock walls integrated into mining canals on thirteen other major hydraulic mining systems in the Sierra Nevada as recommended by SHPO. They concluded that segments of the canal’s flume bench foundation walls and abutments met NRHP Criterion C for listing in the National Register. These included rock bench walls at Flume Nos. 8, 24-25, 41, 45 and 48, plus the rock retaining walls in Alder Creek and Plum Creek canyons that were abandoned by the 1920s reconstruction and replaced by inverted siphons built across the mouth of these two canyons. Significant rock walls were those that, “follow along the natural slope of the drainage represent distinctive engineering features that enhance our understanding of this type or resource” and “those segments of dry-laid rock walls that are the highest, tallest, and display the best workmanship in fitting the granite blocks together, or where walls are found in combination with other distinctive engineering features such as openings through the walls, stepped or tiered walls, stone culverts, rocks containing drill holes, or tall abutment walls at the crossing over major drainages, they convey a greater sense of their historic function and method of construction.” SHPO concurred with the Wee and Herbert findings in 1993. Subsequent study for Federal Energy Regulatory Commission (FERC) Project 184 relicensing in 2008 by PAR Environmental Services, confirmed these findings once again with SHPO concurrence.38

All of the above determinations address the upper section of the canal above the forebay which has supplied water for the El Dorado Hydroelectric Power Plant, located near Pollock Pines since 1924. Since 2006, four historic resource evaluations have addressed eligibility of the lower portion of the El Dorado Canal below the El Dorado Powerhouse Forebay:

1) In 2006, Supernowicz prepared three brief paragraphs on an “update sheet” for two sites on the El Dorado Canal recorded in 2003 by Robert W. Allen, located approximately ½ and 1 mile below the Forebay. That one-paragraph history (without citation to any sources other than a single General Land Office Plat Map) states that the canal may have been constructed in the 1850s, or may be related to a ditch built on the upper South Fork of the American River around 1874 known as “Kirk’s new ditch,” shown on the aforementioned plat map. Supernowicz also field-checked the canal and concluded that it had been “improved numerous times and enlarged,” speculating that the enlargement may have been made in the 1920s “to accommodate larger flows of water.” After reciting the four eligibility criteria for the California Register, Supernowicz states that the canal appears significant under Criterion 1 for “its association with the historic development of a large water transport system to the western foothills of El Dorado County,” and under Criterion 3 “for its engineering design.” He does not elaborate further on these justifications for his eligibility assessment (Supernowicz 2006). There is no indication that the SHPO ever reviewed or concurred with this finding.

2) In 2012 Cardno Entrix prepared an evaluation of the El Dorado Main Canal for EID that addressed the NRHP and CRHR eligibility of an approximately three-mile segment of the El Dorado Canal (aka, Main or Lower Canal) from the El Dorado Powerhouse Forebay to Reservoir No. 1. This report concludes that the three-mile segment associated with this proposed construction project is not eligible for listing on the NRHP or CRHR under any of the criteria of significance, and furthermore lacked integrity of setting, feeling, association, design and workmanship calling out specifically the adverse impacts of “maintenance, residential construction,

installation of bridges/walkways, and ... other facilities associated with modern use of the canal."\(^{39}\) It does not appear that this evaluation was ever submitted for SHPO review and concurrence.

3) In 2013 El Dorado County proposed a local assistance project with Caltrans to replace the Alder Drive Bridge over the El Dorado Irrigation District Canal in the vicinity of Camino. Monte Kim of ICF International evaluated a 90-foot-long segment of the El Dorado Main Canal for this project and found that it lacked significance and was not eligible for the NRHP or CRHR. Specifically, Kim noted that the earthen canal segment lacked engineering distinction and had been substantially widened to twice its original width sometime in the 1910s or 1920s. In addition, its integrity of setting and feeling was compromised by state highway construction and modern residential developments.\(^{40}\) No record of SHPO concurrence on this found was found through our Information Center search.

4) In 2017 Cheryl Brookshear and Chris McMorris of JRP Historical Consulting, LLC prepared an historic resources evaluation of El Dorado Canal for the Caltrans US Highway 50 Camino Safety Project. This evaluation concluded that the mining canal constructed in the 1870s between the Kyburz and Placerville was an important early mining canal under Criterion A/1, but lacks integrity to that period of significance because of the canal reconstruction in the mid-1920s. When hydraulic mining faltered in the late 1880s its owners did not promote irrigation as an alternative use and it was not used extensively for that purpose until the late 1910s or 1920s, well after the pioneering era of irrigation development in California. SHPO had found portions of the upper canal significant in 1993 under Criteria C/3 in recognition of the engineering of dry-laid granite bench walls upon which flumes rested that conveyed water along steep slopes of the South Fork of the American River Canyon; however, there are no examples of this type of construction below the El Dorado Powerhouse Forebay so the lower canal is unable to convey this significance in engineering. Furthermore, McMorris and Brookshear argued that in the 1950s EID began a program to convert its open ditch system to pipelines, thereby abandoning long segments of the lower canal. The piping project had continued in more recent decades leading to additional abandonment of long stretches of the historic canal alignment and a consequent loss of materials, design, workmanship, association and setting.\(^{41}\)

While it is unclear whether SHPO has concurred in all of these findings with respect to the canal’s eligibility for the NRHP or CRHR, the JRP 2017 Camino Safety Project received SHPO concurrence on its findings of “not eligible for listing in the National Register of Historic Places” with respect to the El Dorado Canal in the vicinity of Camino, CA.\(^{42}\) The consensus of the previous evaluations is that the El Dorado Canal does not meet NRHP and CRHR criteria, and this evaluation of the Lower El Dorado Canal agrees with that conclusion.

The Lower El Dorado Canal has two separate historic contexts, the first associated with the period of hydraulic mining for which it was constructed, and the second associated with irrigation and domestic water supply for which it has been exclusively and decreasingly used since the 1920s. When constructed in the 1870s to serve hydraulic mining, the entire canal – both upper and lower segments – was among the longest and most expensive built in the region. Based on the consensus described above in the summary of previous studies, the only part of the El Dorado Canal – upper or lower – that has integrity to the hydraulic mining period is the rock bench walls on the upper portion. The water conveyance channel itself does not retain integrity to this period, and is not eligible for the NRHP or CRHR under Criterion A or Criterion 1 in the context of hydraulic mining.

Once the practice of hydraulic mining was severely curtailed in 1884, the canal entered a period of underutilization until WSG&E bought it in 1916 for hydropower development. The company used the upper canal, above Forebay Dam

\(^{39}\) Cardno-Entrix, Cultural Resources Survey Report: EID Main Ditch-Forebay to RES 1 Project (December 2012), 4:3-4:7.

\(^{42}\) Julianne Polanco, SHPO, to Kendall Schinke, Chief, Environmental Management, M4 Branch, Caltrans District 3, July 6, 2017 (FHWA_2017_0608_001)
(completed in 1923), for hydropower production, and after the 1919 Railroad Commission ruling, the lower canal was increasingly used to supply downstream consumptive water users for domestic and irrigation purposes. Once the El Dorado Irrigation District formed in 1925 and took over the operation of the lower canal, the upper and lower segments operated separately by two different owners until 1993. The conversion of the lower canal to use by irrigators and municipalities is not historically significant under NRHP Criterion A or CRHR Criterion 1, in large part, because it was a secondary use of the canal. Historically significant irrigation canals in California are often those developed by mutual canal companies in the pioneering days of irrigated agriculture in the state – the last decades of the nineteenth century. The lower El Dorado Main Canal, a converted mining canal, does not have historic significance for its association with irrigation and municipal water supply that rises to the level of significance under these criteria. In addition, the lower canal has lost substantial integrity to the period when it was converted to irrigation / municipal use, 1919. Once EID constructed Reservoir 1 and water treatment plant circa 1955, the canal ceased functioning as it had since 1919 because EID delivered the treated water in a system of distribution pipes below Reservoir 1, abandoning the canal as part of the municipal water delivery system. The number of irrigators drawing water from the canal below Forebay Dam dropped precipitously throughout the twentieth century, as irrigators often relied heavily on pumped water for supply. By 2012, EID no longer had strong enough demand for raw water deliveries below Reservoir 1 to justify continued operation of the canal, and abandoned it. Only two irrigators continue to draw water from the segment of the canal between Forebay Dam and Reservoir 1. The diminished use of the canal over the course of the twentieth and twenty-first centuries represents a substantial loss of integrity of association because the role of the canal in serving its post-1919 purpose of supplying irrigation and municipal water dropped sharply. Diminished use and abandonment have caused the canal to suffer substantial losses of integrity of design, materials, workmanship, and feeling to the period most closely associated with irrigation, 1919 to the construction of Reservoir 1 circa 1955. Segments of the canal have been piped, filled in, and in some cases so undercut and scoured that the alignment has shifted (see Linear Feature Records 2 and 4 above), and in other places so glutted with sediment and vegetation that the earth ditch has nearly reverted to nature (see Linear Feature Records 5 and 6 above).

The canal is not significant under NRHP Criterion B or CRHR Criterion 2 because it is not directly associated with the lives of persons important to history. Kirk and Bishop developed the idea for the canal, and it represents their life’s work. However, as engineers their association with the canal falls correctly under NRHP Criterion C or CRHR Criterion 3. Construction, maintenance and operation of such a large-scale canal relied upon the involvement of numerous individuals. However, outside of Kirk and Bishop, no single individual is clearly associated with the canal. Review of the history of the El Dorado Water Company, El Dorado Water Corporation, and El Dorado Irrigation District does not indicate that individuals associated with those organizations played significant roles in the further development of the El Dorado Main Canal or through their association with the canal played an important role in local, state, or national history that would merit significance under these criteria.

Under NRHP Criterion C or CRHR Criterion 3, the lower El Dorado Canal is not an important example of a type, period, or method of construction because it lacks historic integrity. Previous evaluation has found that the dry-laid rock bench walls on the upper canal are significant under these criteria. No examples of that property type are present on the lower canal between Forebay Dam and Placerville. As discussed above, the lower canal has suffered substantial losses of integrity by abandonment and it cannot convey its engineering attributes present during its pioneering period of construction in the 1870s and following decades, nor its primary period of use for irrigation and municipal water, 1919 to circa 1955.

The El Dorado Canal is not significant under NRHP Criterion D or CRHR Criterion 4 as a source (or likely source) of important information regarding history. It does not appear to have any likelihood of yielding important information about historic construction materials or technologies.

While the entire canal was a significant purveyor of water as an early and extensive mining canal of the 1870s, both the upper and the lower canal lack historic integrity to that period and do not convey this history. The lower canal is also associated with a period of irrigation and municipal water supply, 1919 – circa 1955; however, the canal is not historically significant within that context, and it does not retain historic integrity to that period. The Lower El Dorado Main Canal is not eligible for listing in the NRHP or CRHR.
Photographs (continued):

Photograph 8: Control structure at point near outlet at Forebay Dam. Camera facing downstream, December 21, 2017.

Photograph 9: El Dorado Main Canal from control structure just downstream from outlet at Forebay Dam. Camera facing downstream, December 21, 2017.
Photograph 10: Bridge and pacific yew tree east of second bend in El Dorado Main Canal segment upstream of Blair Road Bridge. Camera facing upstream, December 21, 2017.

Photograph 11: Drainage downslope of right bank west of second bend in El Dorado Main Canal segment upstream from Blair Road Bridge. Camera facing west, December 21, 2017.
Photograph 12: Del Dorado main canal near private dock in segment upstream from Blair Road Bridge. Camera facing upstream, December 21, 2017.

Photograph 14: First bend in El Dorado Main Canal just upstream from Blair Road Bridge; note undercutting of banks. Camera facing downstream, December 21, 2017.

<table>
<thead>
<tr>
<th>Photograph 18: Culvert at point west of 5561 Pony Express Trail. Camera facing upstream, December 21, 2017.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photograph 19: Point at Alder Road Bridge. Camera facing upstream from downstream side of bridge, December 21, 2017.</td>
</tr>
</tbody>
</table>
Photograph 20: Point at Alder Road Bridge. Camera facing downstream from downstream end of culvert, December 21, 2017.

Photograph 21: Point at Alder Road Bridge. Camera facing upstream from upstream end of culvert, December 21, 2017.

Photograph 24: El Dorado Main Canal at Airport Road, abandoned and filled with vegetation. Camera facing upstream, December 21, 2017.

Photograph 25: El Dorado Main Canal at Airport Road, abandoned and filled with vegetation. Camera facing downstream, December 21, 2017.
Resource Name or # (Assigned by recorder): El Dorado Canal

Map Name: USGS, The National Map

Scale: 1:15,000

Date of Map: 1/12/2018

Required Information
State of California – The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
LOCATION MAP

*Resource Name or # (Assigned by recorder): El Dorado Canal

*Map Name: USGS, The National Map

*Scale: 1:15,000

*Date of Map: 1/12/2018

DPR 523L (1/95) *Required Information
*Resource Name or # (Assigned by recorder): El Dorado Canal

*Map Name: USGS, The National Map

*Scale: 1:15,000

*Date of Map: 1/12/2018

State of California – The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
LOCATION MAP

Primary # ___________________________
HRI # ______________________________
Trinomial __________________________

Page 33 of 36

*Required Information

DPR 523L (1/95)
State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
LOCATION MAP

*Resource Name or # (Assigned by recorder): El Dorado Canal

*Map Name: USGS, The National Map

*Scale: 1:15,000

*Date of Map: 1/12/2018

Primary # ____________________________
HRI # ______________________________
Trinomial ____________________________

State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
LOCATION MAP

Page 34 of 36

*Required Information
Location Map

Resource Name or # (Assigned by recorder): El Dorado Canal

Map Name: USGS, The National Map

Scale: 1:15,000

Date of Map: 1/12/2018

Required Information

State of California – The Resources Agency
DEPARTMENT OF PARKS AND RECREATION

Location Map

Primary #
HRI #
Trinomial

Page 35 of 36

DPR 523L (1/95)